Advertisement

Journal of High Energy Physics

, 2014:123 | Cite as

The powers of monodromy

  • Liam McAllister
  • Eva Silverstein
  • Alexander Westphal
  • Timm Wrase
Open Access
Article

Abstract

Flux couplings to string theory axions yield super-Planckian field ranges along which the axion potential energy grows. At the same time, other aspects of the physics remain essentially unchanged along these large displacements, respecting a discrete shift symmetry with a sub-Planckian period. After a general overview of this monodromy effect and its application to large-field inflation, we present new classes of specific models of monodromy inflation, with monomial potentials μ 4−p ϕ p . A key simplification in these models is that the inflaton potential energy plays a leading role in moduli stabilization during inflation. The resulting inflaton-dependent shifts in the moduli fields lead to an effective flattening of the inflaton potential, i.e. a reduction of the exponent from a fiducial value p 0 to p < p 0. We focus on examples arising in compactifications of type IIB string theory on products of tori or Riemann surfaces, where the inflaton descends from the NS-NS two-form potential B 2, with monodromy induced by a coupling to the R-R field strength F 1. In this setting we exhibit models with p = 2/3, 4/3, 2, and 3, corresponding to predictions for the tensor-to-scalar ratio of r ≈ 0.04, 0.09, 0.13, and 0.2, respectively. Using mirror symmetry, we also motivate a second class of examples with the role of the axions played by the real parts of complex structure moduli, with fluxes inducing monodromy.

Keywords

Cosmology of Theories beyond the SM Flux compactifications 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Seiberg, The power of holomorphy: exact results in 4D SUSY field theories, hep-th/9408013 [INSPIRE].
  2. [2]
    A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].ADSGoogle Scholar
  3. [3]
    A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B 108 (1982) 389 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  4. [4]
    A. Albrecht and P.J. Steinhardt, Cosmology for grand unified theories with radiatively induced symmetry breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    A.A. Starobinsky, A new type of isotropic cosmological models without singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    V.F. Mukhanov and G.V. Chibisov, Quantum fluctuation and nonsingular universe (in Russian), JETP Lett. 33 (1981) 532 [Pisma Zh. Eksp. Teor. Fiz. 33 (1981) 549] [INSPIRE].
  7. [7]
    G.V. Chibisov and V.F. Mukhanov, Galaxy formation and phonons, Mon. Not. Roy. Astron. Soc. 200 (1982) 535 [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  8. [8]
    A.H. Guth and S.Y. Pi, Fluctuations in the new inflationary universe, Phys. Rev. Lett. 49 (1982) 1110 [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    S.W. Hawking, The development of irregularities in a single bubble inflationary universe, Phys. Lett. B 115 (1982) 295 [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    A.A. Starobinsky, Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations, Phys. Lett. B 117 (1982) 175 [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    A.A. Starobinsky, The perturbation spectrum evolving from a nonsingular initially de-Sitter cosmology and the microwave background anisotropy, Sov. Astron. Lett. 9 (1983) 302 [INSPIRE].ADSGoogle Scholar
  12. [12]
    J.M. Bardeen, J.R. Bond, N. Kaiser and A.S. Szalay, The statistics of peaks of Gaussian random fields, Astrophys. J. 304 (1986) 15 [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    K.N. Abazajian et al., Inflation physics from the cosmic microwave background and large scale structure, arXiv:1309.5381 [INSPIRE].
  14. [14]
    D.H. Lyth, What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy?, Phys. Rev. Lett. 78 (1997) 1861 [hep-ph/9606387] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    G. Efstathiou and K.J. Mack, The Lyth bound revisited, JCAP 05 (2005) 008 [astro-ph/0503360] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    M. Farhang, J.R. Bond, O. Doré and C.B. Netterfield, Primordial gravitational wave detectability with deep small-sky cosmic microwave background experiments, Astrophys. J. 771 (2013) 12 [arXiv:1108.2043] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    BICEP2 collaboration, P.A.R. Ade et al., Detection of B-mode polarization at degree angular scales by BICEP2, Phys. Rev. Lett. 112 (2014) 241101 [arXiv:1403.3985] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    BICEP2 collaboration, P.A.R. Ade et al., BICEP2 II: experiment and three-year data set, Astrophys. J. 792 (2014) 62 [arXiv:1403.4302] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    U. Seljak and M. Zaldarriaga, Signature of gravity waves in polarization of the microwave background, Phys. Rev. Lett. 78 (1997) 2054 [astro-ph/9609169] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    M. Kamionkowski, A. Kosowsky and A. Stebbins, A probe of primordial gravity waves and vorticity, Phys. Rev. Lett. 78 (1997) 2058 [astro-ph/9609132] [INSPIRE]. CrossRefADSGoogle Scholar
  21. [21]
    Planck collaboration, P.A.R. Ade et al., Planck intermediate results. XIX. An overview of the polarized thermal emission from galactic dust, arXiv:1405.0871 [INSPIRE].
  22. [22]
    Planck collaboration, P.A.R. Ade et al., Planck intermediate results. XXII. Frequency dependence of thermal emission from galactic dust in intensity and polarization, arXiv:1405.0874 [INSPIRE].
  23. [23]
    A.D. Linde, Chaotic inflation, Phys. Lett. B 129 (1983) 177 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  24. [24]
    E. Silverstein and A. Westphal, Monodromy in the CMB: gravity waves and string inflation, Phys. Rev. D 78 (2008) 106003 [arXiv:0803.3085] [INSPIRE].ADSGoogle Scholar
  25. [25]
    L. McAllister, E. Silverstein and A. Westphal, Gravity waves and linear inflation from axion monodromy, Phys. Rev. D 82 (2010) 046003 [arXiv:0808.0706] [INSPIRE].ADSGoogle Scholar
  26. [26]
    R. Flauger, L. McAllister, E. Pajer, A. Westphal and G. Xu, Oscillations in the CMB from axion monodromy inflation, JCAP 06 (2010) 009 [arXiv:0907.2916] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    N. Kaloper and L. Sorbo, A natural framework for chaotic inflation, Phys. Rev. Lett. 102 (2009) 121301 [arXiv:0811.1989] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    N. Kaloper, A. Lawrence and L. Sorbo, An ignoble approach to large field inflation, JCAP 03 (2011) 023 [arXiv:1101.0026] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    N. Kaloper and A. Lawrence, Natural chaotic inflation and UV sensitivity, Phys. Rev. D 90 (2014) 023506 [arXiv:1404.2912] [INSPIRE].ADSGoogle Scholar
  30. [30]
    X. Dong, B. Horn, E. Silverstein and A. Westphal, Simple exercises to flatten your potential, Phys. Rev. D 84 (2011) 026011 [arXiv:1011.4521] [INSPIRE].ADSGoogle Scholar
  31. [31]
    S. Dubovsky, A. Lawrence and M.M. Roberts, Axion monodromy in a model of holographic gluodynamics, JHEP 02 (2012) 053 [arXiv:1105.3740] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    G. D’Amico, R. Gobbetti, M. Schillo and M. Kleban, Inflation from flux cascades, Phys. Lett. B 725 (2013) 218 [arXiv:1211.3416] [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    G. D’Amico, R. Gobbetti, M. Kleban and M. Schillo, Unwinding inflation, JCAP 03 (2013) 004 [arXiv:1211.4589] [INSPIRE].CrossRefGoogle Scholar
  34. [34]
    B. Shlaer, Chaotic brane inflation, Phys. Rev. D 88 (2013) 103503 [arXiv:1211.4024] [INSPIRE].ADSGoogle Scholar
  35. [35]
    G. Gur-Ari, Brane inflation and moduli stabilization on twisted tori, JHEP 01 (2014) 179 [arXiv:1310.6787] [INSPIRE].CrossRefGoogle Scholar
  36. [36]
    E. Palti and T. Weigand, Towards large r from [p, q]-inflation, JHEP 04 (2014) 155 [arXiv:1403.7507] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    F. Marchesano, G. Shiu and A.M. Uranga, F-term axion monodromy inflation, arXiv:1404.3040 [INSPIRE].
  38. [38]
    K. Harigaya and M. Ibe, Inflaton potential on a Riemann surface, arXiv:1404.3511 [INSPIRE].
  39. [39]
    A. Hebecker, S.C. Kraus and L.T. Witkowski, D7-brane chaotic inflation, Phys. Lett. B 737 (2014) 16 [arXiv:1404.3711] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  40. [40]
    L.E. Ibáñez and I. Valenzuela, The inflaton as a MSSM Higgs and open string modulus monodromy inflation, arXiv:1404.5235 [INSPIRE].
  41. [41]
    T. Kobayashi, O. Seto and Y. Yamaguchi, Axion monodromy inflation with sinusoidal corrections, arXiv:1404.5518 [INSPIRE].
  42. [42]
    M. Dine, P. Draper and A. Monteux, Monodromy inflation in SUSY QCD, JHEP 07 (2014) 146 [arXiv:1405.0068] [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    M. Arends et al., D7-brane moduli space in axion monodromy and fluxbrane inflation, Fortschr. Phys. 62 (2014) 647 [arXiv:1405.0283] [INSPIRE].CrossRefGoogle Scholar
  44. [44]
    K. Yonekura, Notes on natural inflation, arXiv:1405.0734 [INSPIRE].
  45. [45]
    T. Higaki, T. Kobayashi, O. Seto and Y. Yamaguchi, Axion monodromy inflation with multi-natural modulations, arXiv:1405.0775 [INSPIRE].
  46. [46]
    D. Wenren, Tilt and tensor-to-scalar ratio in multifield monodromy inflation, arXiv:1405.1411 [INSPIRE].
  47. [47]
    F. Hassler, D. Lüst and S. Massai, On inflation and de Sitter in non-geometric string backgrounds, arXiv:1405.2325 [INSPIRE].
  48. [48]
    J.R. Bond, L. Kofman, S. Prokushkin and P.M. Vaudrevange, Roulette inflation with Kähler moduli and their axions, Phys. Rev. D 75 (2007) 123511 [hep-th/0612197] [INSPIRE].MathSciNetADSGoogle Scholar
  49. [49]
    R. Blumenhagen and E. Plauschinn, Towards universal axion inflation and reheating in string theory, Phys. Lett. B 736 (2014) 482 [arXiv:1404.3542] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  50. [50]
    T.W. Grimm, Axion inflation in F-theory, arXiv:1404.4268 [INSPIRE].
  51. [51]
    K. Choi, H. Kim and S. Yun, Natural inflation with multiple sub-Planckian axions, Phys. Rev. D 90 (2014) 023545 [arXiv:1404.6209] [INSPIRE].ADSGoogle Scholar
  52. [52]
    T. Higaki and F. Takahashi, Natural and multi-natural inflation in axion landscape, JHEP 07 (2014) 074 [arXiv:1404.6923] [INSPIRE].CrossRefADSGoogle Scholar
  53. [53]
    S.H.H. Tye and S.S.C. Wong, Helical inflation and cosmic strings, arXiv:1404.6988 [INSPIRE].
  54. [54]
    R. Kappl, S. Krippendorf and H.P. Nilles, Aligned natural inflation: monodromies of two axions, Phys. Lett. B 737 (2014) 124 [arXiv:1404.7127] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  55. [55]
    T.C. Bachlechner, M. Dias, J. Frazer and L. McAllister, A new angle on chaotic inflation, arXiv:1404.7496 [INSPIRE].
  56. [56]
    I. Ben-Dayan, F.G. Pedro and A. Westphal, Hierarchical axion inflation, arXiv:1404.7773 [INSPIRE].
  57. [57]
    C. Long, L. McAllister and P. McGuirk, Aligned natural inflation in string theory, Phys. Rev. D 90 (2014) 023501 [arXiv:1404.7852] [INSPIRE].ADSGoogle Scholar
  58. [58]
    R. Kallosh, A. Linde and A. Westphal, Chaotic inflation in supergravity after Planck and BICEP2, Phys. Rev. D 90 (2014) 023534 [arXiv:1405.0270] [INSPIRE].ADSGoogle Scholar
  59. [59]
    A. Ashoorioon and M.M. Sheikh-Jabbari, Gauged M-flation after BICEP2, arXiv:1405.1685 [INSPIRE].
  60. [60]
    K. Freese, J.A. Frieman and A.V. Olinto, Natural inflation with pseudo-Nambu-Goldstone bosons, Phys. Rev. Lett. 65 (1990) 3233 [INSPIRE].CrossRefADSGoogle Scholar
  61. [61]
    F.C. Adams, J.R. Bond, K. Freese, J.A. Frieman and A.V. Olinto, Natural inflation: particle physics models, power law spectra for large scale structure and constraints from COBE, Phys. Rev. D 47 (1993) 426 [hep-ph/9207245] [INSPIRE].ADSGoogle Scholar
  62. [62]
    J.E. Kim, H.P. Nilles and M. Peloso, Completing natural inflation, JCAP 01 (2005) 005 [hep-ph/0409138] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  63. [63]
    S. Dimopoulos, S. Kachru, J. McGreevy and J.G. Wacker, N-flation, JCAP 08 (2008) 003 [hep-th/0507205] [INSPIRE].CrossRefADSGoogle Scholar
  64. [64]
    T.W. Grimm, Axion inflation in type-II string theory, Phys. Rev. D 77 (2008) 126007 [arXiv:0710.3883] [INSPIRE].MathSciNetADSGoogle Scholar
  65. [65]
    J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998) [INSPIRE].CrossRefGoogle Scholar
  66. [66]
    M. Dodelson, X. Dong, E. Silverstein and G. Torroba, New solutions with accelerated expansion in string theory, arXiv:1310.5297 [INSPIRE].
  67. [67]
    E. Bergshoeff, M. de Roo, M.B. Green, G. Papadopoulos and P.K. Townsend, Duality of type-II 7 branes and 8 branes, Nucl. Phys. B 470 (1996) 113 [hep-th/9601150] [INSPIRE].CrossRefADSGoogle Scholar
  68. [68]
    H. Ooguri and C. Vafa, On the geometry of the string landscape and the swampland, Nucl. Phys. B 766 (2007) 21 [hep-th/0605264] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  69. [69]
    L. Smolin, Gravitational radiative corrections as the origin of spontaneous symmetry breaking!, Phys. Lett. B 93 (1980) 95 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  70. [70]
    N.C. Bizet, A. Klemm and D.V. Lopes, Landscaping with fluxes and the E 8 Yukawa point in F-theory, arXiv:1404.7645 [INSPIRE].
  71. [71]
    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  72. [72]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].MathSciNetADSGoogle Scholar
  73. [73]
    A. Saltman and E. Silverstein, A new handle on de Sitter compactifications, JHEP 01 (2006) 139 [hep-th/0411271] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  74. [74]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].MathSciNetADSGoogle Scholar
  75. [75]
    A. Sen, F theory and orientifolds, Nucl. Phys. B 475 (1996) 562 [hep-th/9605150] [INSPIRE].CrossRefADSGoogle Scholar
  76. [76]
    S. Deser, R. Jackiw and G. ’t Hooft, Three-dimensional Einstein gravity: dynamics of flat space, Annals Phys. 152 (1984) 220 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  77. [77]
    M. Kleban and M. Redi, Expanding F-theory, JHEP 09 (2007) 038 [arXiv:0705.2020] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  78. [78]
    X. Dong, B. Horn, S. Matsuura, E. Silverstein and G. Torroba, FRW solutions and holography from uplifted AdS/CFT, Phys. Rev. D 85 (2012) 104035 [arXiv:1108.5732] [INSPIRE].ADSGoogle Scholar
  79. [79]
    A. Maloney, E. Silverstein and A. Strominger, De Sitter space in noncritical string theory, hep-th/0205316 [INSPIRE].
  80. [80]
    E. Silverstein, (A)dS backgrounds from asymmetric orientifolds, hep-th/0106209 [INSPIRE].
  81. [81]
    E. Silverstein, Simple de Sitter solutions, Phys. Rev. D 77 (2008) 106006 [arXiv:0712.1196] [INSPIRE].MathSciNetADSGoogle Scholar
  82. [82]
    A. Ashoorioon, K. Dimopoulos, M.M. Sheikh-Jabbari and G. Shiu, Non-Bunch-Davies initial state reconciles chaotic models with BICEP and Planck, Phys. Lett. B 737 (2014) 98 [arXiv:1403.6099] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  83. [83]
    K.M. Smith et al., On quantifying and resolving the BICEP2/Planck tension over gravitational waves, Phys. Rev. Lett. 113 (2014) 031301 [arXiv:1404.0373] [INSPIRE].CrossRefADSGoogle Scholar
  84. [84]
    B. Freivogel, M. Kleban, M.R. Martinez and L. Susskind, Observational consequences of a landscape: epilogue, arXiv:1404.2274 [INSPIRE].
  85. [85]
    R. Bousso, D. Harlow and L. Senatore, Inflation after false vacuum decay: new evidence from BICEP2, arXiv:1404.2278 [INSPIRE].
  86. [86]
    D. Spergel, R. Flauger and R. Hlozek, Planck data reconsidered, arXiv:1312.3313 [INSPIRE].
  87. [87]
    B. Audren, D.G. Figueroa and T. Tram, A note of clarification: BICEP2 and Planck are not in tension, arXiv:1405.1390 [INSPIRE].
  88. [88]
    R. Easther and R. Flauger, Planck constraints on monodromy inflation, JCAP 02 (2014) 037 [arXiv:1308.3736] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  89. [89]
    H. Peiris, R. Easther and R. Flauger, Constraining monodromy inflation, JCAP 09 (2013) 018 [arXiv:1303.2616] [INSPIRE].CrossRefADSGoogle Scholar
  90. [90]
    M.G. Jackson, B. Wandelt and F. Bouchet, Angular correlation functions for models with logarithmic oscillations, Phys. Rev. D 89 (2014) 023510 [arXiv:1303.3499] [INSPIRE].ADSGoogle Scholar
  91. [91]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XXII. Constraints on inflation, arXiv:1303.5082 [INSPIRE].
  92. [92]
    P.D. Meerburg, D.N. Spergel and B.D. Wandelt, Searching for oscillations in the primordial power spectrum. I. Perturbative approach, Phys. Rev. D 89 (2014) 063536 [arXiv:1308.3704] [INSPIRE].ADSGoogle Scholar
  93. [93]
    P.D. Meerburg and D.N. Spergel, Searching for oscillations in the primordial power spectrum. II. Constraints from Planck data, Phys. Rev. D 89 (2014) 063537 [arXiv:1308.3705] [INSPIRE].ADSGoogle Scholar
  94. [94]
    M. Aich, D.K. Hazra, L. Sriramkumar and T. Souradeep, Oscillations in the inflaton potential: complete numerical treatment and comparison with the recent and forthcoming CMB datasets, Phys. Rev. D 87 (2013) 083526 [arXiv:1106.2798] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Liam McAllister
    • 1
  • Eva Silverstein
    • 2
    • 3
    • 4
  • Alexander Westphal
    • 5
  • Timm Wrase
    • 2
  1. 1.Department of PhysicsCornell UniversityIthacaU.S.A.
  2. 2.Stanford Institute for Theoretical PhysicsStanford UniversityStanfordU.S.A.
  3. 3.SLAC National Accelerator LaboratoryMenlo ParkU.S.A.
  4. 4.Kavli Institute for Particle Astrophysics and CosmologyStanfordU.S.A.
  5. 5.Deutsches Elektronen-Synchrotron DESY, Theory GroupHamburgGermany

Personalised recommendations