Universal spectrum of 2d conformal field theory in the large c limit

Abstract

Two-dimensional conformal field theories exhibit a universal free energy in the high temperature limit T → ∞, and a universal spectrum in the Cardy regime, Δ → ∞. We show that a much stronger form of universality holds in theories with a large central charge c and a sparse light spectrum. In these theories, the free energy is universal at all values of the temperature, and the microscopic spectrum matches the Cardy entropy for all \( \Delta \ge \frac{c}{6} \). The same is true of three-dimensional quantum gravity; therefore our results provide simple necessary and sufficient criteria for 2d CFTs to behave holographically in terms of the leading spectrum and thermodynamics. We also discuss several applications to CFT and gravity, including operator dimension bounds derived from the modular bootstrap, universality in symmetric orbifolds, and the role of non-universal ‘enigma’ saddlepoints in the thermodynamics of 3d gravity.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  2. [2]

    J.L. Cardy, Operator content of two-dimensional conformally invariant theories, Nucl. Phys. B 270 (1986) 186 [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  3. [3]

    A. Strominger, Black hole entropy from near horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  4. [4]

    J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  5. [5]

    M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT Correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. [6]

    R. Dijkgraaf, J.M. Maldacena, G.W. Moore and E.P. Verlinde, A black hole Farey tail, hep-th/0005003 [INSPIRE].

  7. [7]

    J. Manschot and G.W. Moore, A Modern Farey Tail, Commun. Num. Theor. Phys. 4 (2010) 103 [arXiv:0712.0573] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  8. [8]

    E. Witten, Three-dimensional gravity revisited, arXiv:0706.3359 [INSPIRE].

  9. [9]

    M.R. Gaberdiel, S. Gukov, C.A. Keller, G.W. Moore and H. Ooguri, Extremal N = (2, 2) 2D Conformal Field Theories and Constraints of Modularity, Commun. Num. Theor. Phys. 2 (2008)743 [arXiv:0805.4216] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  10. [10]

    A. Cappelli, C. Itzykson and J.B. Zuber, Modular invariant partition functions in two-dimensions, Nucl. Phys. B 280 (1987) 445 [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  11. [11]

    S. Hellerman, A universal inequality for CFT and quantum gravity, JHEP 08 (2011) 130 [arXiv:0902.2790] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  12. [12]

    T. Hartman, Entanglement Entropy at Large Central Charge, arXiv:1303.6955 [INSPIRE].

  13. [13]

    T. Barrella, X. Dong, S.A. Hartnoll and V.L. Martin, Holographic entanglement beyond classical gravity, JHEP 09 (2013) 109 [arXiv:1306.4682] [INSPIRE].

    MathSciNet  Google Scholar 

  14. [14]

    B. Chen and J.-J. Zhang, On short interval expansion of Rényi entropy, JHEP 11 (2013) 164 [arXiv:1309.5453] [INSPIRE].

    Article  ADS  Google Scholar 

  15. [15]

    E. Perlmutter, Comments on Renyi entropy in AdS 3 /CFT 2, JHEP 05 (2014) 052 [arXiv:1312.5740] [INSPIRE].

    Article  ADS  Google Scholar 

  16. [16]

    A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of Long-Distance AdS Physics from the CFT Bootstrap, JHEP 08 (2014) 145 [arXiv:1403.6829] [INSPIRE].

    Article  Google Scholar 

  17. [17]

    T. Faulkner, The Entanglement Renyi Entropies of Disjoint Intervals in AdS/CFT, arXiv:1303.7221 [INSPIRE].

  18. [18]

    J. de Boer, F. Denef, S. El-Showk, I. Messamah and D. Van den Bleeken, Black hole bound states in AdS 3 × S 2, JHEP 11 (2008) 050 [arXiv:0802.2257] [INSPIRE].

    Article  Google Scholar 

  19. [19]

    I. Bena, B.D. Chowdhury, J. de Boer, S. El-Showk and M. Shigemori, Moulting black holes, JHEP 03 (2012) 094 [arXiv:1108.0411] [INSPIRE].

    Article  ADS  Google Scholar 

  20. [20]

    D. Friedan and C.A. Keller, Constraints on 2d CFT partition functions, JHEP 10 (2013) 180 [arXiv:1307.6562] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  21. [21]

    J.D. Qualls and A.D. Shapere, Bounds on operator dimensions in 2D conformal field theories, JHEP 05 (2014) 091 [arXiv:1312.0038] [INSPIRE].

    Article  ADS  Google Scholar 

  22. [22]

    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  23. [23]

    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  25. [25]

    S.W. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-de Sitter Space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  26. [26]

    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  27. [27]

    A. Maloney and E. Witten, Quantum gravity partition functions in three dimensions, JHEP 02 (2010) 029 [arXiv:0712.0155] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  28. [28]

    J.P. Gauntlett and J.B. Gutowski, Concentric black rings, Phys. Rev. D 71 (2005) 025013 [hep-th/0408010] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. [29]

    F. Denef and G.W. Moore, Split states, entropy enigmas, holes and halos, JHEP 11 (2011) 129 [hep-th/0702146] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  30. [30]

    A. Sen, Black hole entropy function, attractors and precision counting of microstates, Gen. Rel. Grav. 40 (2008) 2249 [arXiv:0708.1270] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  31. [31]

    A. Sen, Logarithmic corrections to rotating extremal black hole entropy in four and five dimensions, Gen. Rel. Grav. 44 (2012) 1947 [arXiv:1109.3706] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  32. [32]

    C.A. Keller, Phase transitions in symmetric orbifold CFTs and universality, JHEP 03 (2011) 114 [arXiv:1101.4937] [INSPIRE].

    Article  ADS  Google Scholar 

  33. [33]

    R. Dijkgraaf, G.W. Moore, E.P. Verlinde and H.L. Verlinde, Elliptic genera of symmetric products and second quantized strings, Commun. Math. Phys. 185 (1997) 197 [hep-th/9608096] [INSPIRE].

    MathSciNet  Article  MATH  ADS  Google Scholar 

  34. [34]

    J. de Boer, Large-N elliptic genus and AdS/CFT correspondence, JHEP 05 (1999) 017 [hep-th/9812240] [INSPIRE].

    Article  Google Scholar 

  35. [35]

    P. Bantay, Symmetric products, permutation orbifolds and discrete torsion, Lett. Math. Phys. 63 (2003)209 [hep-th/0004025] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bogdan Stoica.

Additional information

ArXiv ePrint: 1405.5137

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hartman, T., Keller, C.A. & Stoica, B. Universal spectrum of 2d conformal field theory in the large c limit. J. High Energ. Phys. 2014, 118 (2014). https://doi.org/10.1007/JHEP09(2014)118

Download citation

Keywords

  • Field Theories in Lower Dimensions
  • AdS-CFT Correspondence