Advertisement

Journal of High Energy Physics

, 2014:108 | Cite as

A minimal model for two-component dark matter

  • Sonja Esch
  • Michael Klasen
  • Carlos E. YagunaEmail author
Open Access
Article

Abstract

We propose and study a new minimal model for two-component dark matter. The model contains only three additional fields, one fermion and two scalars, all singlets under the Standard Model gauge group. Two of these fields, one fermion and one scalar, are odd under a Z 2 symmetry that renders them simultaneously stable. Thus, both particles contribute to the observed dark matter density. This model resembles the union of the singlet scalar and the singlet fermionic models but it contains some new features of its own. We analyze in some detail its dark matter phenomenology. Regarding the relic density, the main novelty is the possible annihilation of one dark matter particle into the other, which can affect the predicted relic density in a significant way. Regarding dark matter detection, we identify a new contribution that can lead either to an enhancement or to a suppression of the spin-independent cross section for the scalar dark matter particle. Finally, we define a set of five benchmarks models compatible with all present bounds and examine their direct detection prospects at planned experiments. A generic feature of this model is that both particles give rise to observable signals in 1-ton direct detection experiments. In fact, such experiments will be able to probe even a subdominant dark matter component at the percent level.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. (2014) [arXiv:1303.5076] [INSPIRE].
  2. [2]
    WMAP collaboration, G. Hinshaw et al., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5226] [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].CrossRefADSGoogle Scholar
  4. [4]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    D. Hooper and S. Profumo, Dark matter and collider phenomenology of universal extra dimensions, Phys. Rept. 453 (2007) 29 [hep-ph/0701197] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [INSPIRE].ADSGoogle Scholar
  7. [7]
    C.P. Burgess, M. Pospelov and T. ter Veldhuis, The Minimal model of nonbaryonic dark matter: A Singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H.G. Tytgat, The Inert Doublet Model: An Archetype for Dark Matter, JCAP 02 (2007) 028 [hep-ph/0612275] [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: An Alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].ADSGoogle Scholar
  10. [10]
    L. Lopez-Honorez, T. Schwetz and J. Zupan, Higgs portal, fermionic dark matter and a Standard Model like Higgs at 125 GeV, Phys. Lett. B 716 (2012) 179 [arXiv:1203.2064] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    T. Hambye, F.-S. Ling, L. Lopez Honorez and J. Rocher, Scalar Multiplet Dark Matter, JHEP 07 (2009) 090 [Erratum ibid. 1005 (2010) 066] [arXiv:0903.4010] [INSPIRE].
  12. [12]
    M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    G. Bélanger, K. Kannike, A. Pukhov and M. Raidal, Impact of semi-annihilations on dark matter phenomenology - an example of Z N symmetric scalar dark matter, JCAP 04 (2012) 010 [arXiv:1202.2962] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    G. Bélanger, K. Kannike, A. Pukhov and M. Raidal, Z 3 Scalar Singlet Dark Matter, JCAP 01 (2013) 022 [arXiv:1211.1014] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    G. Duda, G. Gelmini and P. Gondolo, Detection of a subdominant density component of cold dark matter, Phys. Lett. B 529 (2002) 187 [hep-ph/0102200] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    G. Duda, G. Gelmini, P. Gondolo, J. Edsjo and J. Silk, Indirect detection of a subdominant density component of cold dark matter, Phys. Rev. D 67 (2003) 023505 [hep-ph/0209266] [INSPIRE].ADSGoogle Scholar
  17. [17]
    S. Profumo, K. Sigurdson and L. Ubaldi, Can we discover multi-component WIMP dark matter?, JCAP 12 (2009) 016 [arXiv:0907.4374] [INSPIRE].CrossRefADSGoogle Scholar
  18. [18]
    D. Feldman, Z. Liu, P. Nath and G. Peim, Multicomponent Dark Matter in Supersymmetric Hidden Sector Extensions, Phys. Rev. D 81 (2010) 095017 [arXiv:1004.0649] [INSPIRE].ADSGoogle Scholar
  19. [19]
    H. Baer, A. Lessa, S. Rajagopalan and W. Sreethawong, Mixed axion/neutralino cold dark matter in supersymmetric models, JCAP 06 (2011) 031 [arXiv:1103.5413] [INSPIRE].CrossRefADSGoogle Scholar
  20. [20]
    M. Aoki, M. Duerr, J. Kubo and H. Takano, Multi-Component Dark Matter Systems and Their Observation Prospects, Phys. Rev. D 86 (2012) 076015 [arXiv:1207.3318] [INSPIRE].ADSGoogle Scholar
  21. [21]
    S. Bhattacharya, A. Drozd, B. Grzadkowski and J. Wudka, Two-Component Dark Matter, JHEP 10 (2013) 158 [arXiv:1309.2986] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    L. Bian, R. Ding and B. Zhu, Two Component Higgs-Portal Dark Matter, Phys. Lett. B 728 (2014) 105 [arXiv:1308.3851] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    Y. Kajiyama, H. Okada and T. Toma, Multicomponent dark matter particles in a two-loop neutrino model, Phys. Rev. D 88 (2013) 015029 [arXiv:1303.7356] [INSPIRE].ADSGoogle Scholar
  24. [24]
    Y.G. Kim, K.Y. Lee and S. Shin, Singlet fermionic dark matter, JHEP 05 (2008) 100 [arXiv:0803.2932] [INSPIRE].ADSGoogle Scholar
  25. [25]
    S. Baek, P. Ko and W.-I. Park, Search for the Higgs portal to a singlet fermionic dark matter at the LHC, JHEP 02 (2012) 047 [arXiv:1112.1847] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    S. Baek, P. Ko, W.-I. Park and E. Senaha, Vacuum structure and stability of a singlet fermion dark matter model with a singlet scalar messenger, JHEP 11 (2012) 116 [arXiv:1209.4163] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    M. Fairbairn and R. Hogan, Singlet Fermionic Dark Matter and the Electroweak Phase Transition, JHEP 09 (2013) 022 [arXiv:1305.3452] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    S. Esch, M. Klasen and C.E. Yaguna, Detection prospects of singlet fermionic dark matter, Phys. Rev. D 88 (2013) 075017 [arXiv:1308.0951] [INSPIRE].ADSGoogle Scholar
  29. [29]
    C.E. Yaguna, Gamma rays from the annihilation of singlet scalar dark matter, JCAP 03 (2009) 003 [arXiv:0810.4267] [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    A. Goudelis, Y. Mambrini and C. Yaguna, Antimatter signals of singlet scalar dark matter, JCAP 12 (2009) 008 [arXiv:0909.2799] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    Y. Mambrini, Higgs searches and singlet scalar dark matter: Combined constraints from XENON 100 and the LHC, Phys. Rev. D 84 (2011) 115017 [arXiv:1108.0671] [INSPIRE].ADSGoogle Scholar
  32. [32]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  33. [33]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  34. [34]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 3: A program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].CrossRefADSGoogle Scholar
  35. [35]
    A. Semenov, LanHEP - a package for automatic generation of Feynman rules from the Lagrangian. Updated version 3.1, arXiv:1005.1909 [INSPIRE].
  36. [36]
    P. Gondolo, J. Edsjo, P. Ullio, L. Bergstrom, M. Schelke et al., DarkSUSY: Computing supersymmetric dark matter properties numerically, JCAP 07 (2004) 008 [astro-ph/0406204] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-In Production of FIMP Dark Matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    C.E. Yaguna, The Singlet Scalar as FIMP Dark Matter, JHEP 08 (2011) 060 [arXiv:1105.1654] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    M. Klasen and C.E. Yaguna, Warm and cold fermionic dark matter via freeze-in, JCAP 11 (2013) 039 [arXiv:1309.2777] [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    XENON100 collaboration, E. Aprile et al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].CrossRefADSGoogle Scholar
  41. [41]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    XENON1T collaboration, E. Aprile, The XENON1T Dark Matter Search Experiment, Springer Proc. Phys. C12-02-22 (2013) 93 [arXiv:1206.6288] [INSPIRE].CrossRefGoogle Scholar
  43. [43]
    N. Fornengo, L. Maccione and A. Vittino, Constraints on particle dark matter from cosmic-ray antiprotons, JCAP 04 (2014) 003 [arXiv:1312.3579] [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    LAT collaboration, M. Ackermann et al., Constraints on the Galactic Halo Dark Matter from Fermi-LAT Diffuse Measurements, Astrophys. J. 761 (2012) 91 [arXiv:1205.6474] [INSPIRE].CrossRefADSGoogle Scholar
  45. [45]
    H. Silverwood, C. Weniger, P. Scott and G. Bertone, A realistic assessment of the CTA sensitivity to dark matter annihilation, arXiv:1408.4131 [INSPIRE].

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität MünsterMünsterGermany

Personalised recommendations