Journal of High Energy Physics

, 2014:66 | Cite as

Global aspects of double geometry

  • David S. Berman
  • Martin Cederwall
  • Malcolm J. Perry
Open Access
Article

Abstract

We consider the concept of a generalised manifold in the O(d, d) setting, i.e., in double geometry. The conjecture by Hohm and Zwiebach for the form of finite generalised diffeomorphisms is shown to hold. Transition functions on overlaps are defined. Triple overlaps are trivial concerning their action on coordinates, but non-trivial on fields, including the generalised metric. A generalised manifold is an ordinary manifold, but the generalised metric on the manifold carries a gerbe structure. We show how the abelian behaviour of the gerbe is embedded in the non-abelian T-duality group. We also comment on possibilities and difficulties in the U-duality setting.

Keywords

Differential and Algebraic Geometry Space-Time Symmetries String Duality 

References

  1. [1]
    M.J. Duff, Duality rotations in string theory, Nucl. Phys. B 335 (1990) 610 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  2. [2]
    A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys. B 350 (1991) 395 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  3. [3]
    W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].ADSGoogle Scholar
  4. [4]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].ADSGoogle Scholar
  5. [5]
    W. Siegel, Manifest duality in low-energy superstrings, in Proceedings, Strings 93, Berkeley U.S.A. (1993), pg. 353 [hep-th/9308133] [INSPIRE].
  6. [6]
    C.M. Hull, A geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  7. [7]
    C.M. Hull, Doubled geometry and T-folds, JHEP 07 (2007) 080 [hep-th/0605149] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  8. [8]
    C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  9. [9]
    O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  10. [10]
    O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  11. [11]
    O. Hohm and S.K. Kwak, Frame-like geometry of double field theory, J. Phys. A 44 (2011) 085404 [arXiv:1011.4101] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    O. Hohm and S.K. Kwak, N = 1 supersymmetric double field theory, JHEP 03 (2012) 080 [arXiv:1111.7293] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  13. [13]
    I. Jeon, K. Lee and J.-H. Park, Differential geometry with a projection: application to double field theory, JHEP 04 (2011) 014 [arXiv:1011.1324] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  14. [14]
    I. Jeon, K. Lee and J.-H. Park, Stringy differential geometry, beyond Riemann, Phys. Rev. D 84 (2011) 044022 [arXiv:1105.6294] [INSPIRE].ADSGoogle Scholar
  15. [15]
    I. Jeon, K. Lee and J.-H. Park, Supersymmetric double field theory: stringy reformulation of supergravity, Phys. Rev. D 85 (2012) 081501 [Erratum ibid. D 86 (2012) 089903] [arXiv:1112.0069] [INSPIRE].
  16. [16]
    G. Aldazabal, D. Marques and C. Núñez, Double field theory: a pedagogical review, Class. Quant. Grav. 30 (2013) 163001 [arXiv:1305.1907] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    D.S. Berman and D.C. Thompson, Duality symmetric string and M-theory, arXiv:1306.2643 [INSPIRE].
  18. [18]
    O. Hohm, D. Lüst and B. Zwiebach, The spacetime of double field theory: review, remarks and outlook, Fortsch. Phys. 61 (2013) 926 [arXiv:1309.2977] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    A.B. Borisov and V.I. Ogievetsky, Theory of dynamical affine and conformal symmetries as gravity theory, Theor. Math. Phys. 21 (1975) 1179 [Teor. Mat. Fiz. 21 (1974) 329] [INSPIRE].
  20. [20]
    P.C. West, E 11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [INSPIRE].CrossRefMATHADSGoogle Scholar
  21. [21]
    F. Englert, L. Houart, A. Taormina and P.C. West, The symmetry of M theories, JHEP 09 (2003) 020 [hep-th/0304206] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  22. [22]
    P.C. West, E 11 , SL(32) and central charges, Phys. Lett. B 575 (2003) 333 [hep-th/0307098] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    A. Kleinschmidt and P.C. West, Representations of G +++ and the role of space-time, JHEP 02 (2004) 033 [hep-th/0312247] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  24. [24]
    P.C. West, E 11 origin of brane charges and U-duality multiplets, JHEP 08 (2004) 052 [hep-th/0406150] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    P. West, Generalised BPS conditions, Mod. Phys. Lett. A 27 (2012) 1250202 [arXiv:1208.3397] [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    A. Rocen and P. West, E 11 , generalised space-time and IIA string theory: the R-R sector, arXiv:1012.2744 [INSPIRE].
  27. [27]
    O. Hohm, S.K. Kwak and B. Zwiebach, Unification of type II strings and T-duality, Phys. Rev. Lett. 107 (2011) 171603 [arXiv:1106.5452] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    F. Riccioni and P.C. West, E 11 -extended spacetime and gauged supergravities, JHEP 02 (2008) 039 [arXiv:0712.1795] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  29. [29]
    O. Hohm and H. Samtleben, Exceptional form of D = 11 supergravity, Phys. Rev. Lett. 111 (2013) 231601 [arXiv:1308.1673] [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    C.D.A. Blair, E. Malek and J.-H. Park, M-theory and type IIB from a duality manifest action, JHEP 01 (2014) 172 [arXiv:1311.5109] [INSPIRE].CrossRefGoogle Scholar
  31. [31]
    C. Strickland-Constable, Subsectors, Dynkin diagrams and new generalised geometries, arXiv:1310.4196 [INSPIRE].
  32. [32]
    C.D.A. Blair, E. Malek and A.J. Routh, An O D,D invariant Hamiltonian action for the superstring, arXiv:1308.4829 [INSPIRE].
  33. [33]
    L. Freidel, R.G. Leigh and D. Minic, Born reciprocity in string theory and the nature of spacetime, Phys. Lett. B 730 (2014) 302 [arXiv:1307.7080] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  34. [34]
    D.S. Berman, C.D.A. Blair, E. Malek and M.J. Perry, The O D, D geometry of string theory, Int. J. Mod. Phys. A 29 (2014) 1450080 [arXiv:1303.6727] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  35. [35]
    C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  36. [36]
    O. Hohm and B. Zwiebach, Large gauge transformations in double field theory, JHEP 02 (2013) 075 [arXiv:1207.4198] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  37. [37]
    J.-H. Park, Comments on double field theory and diffeomorphisms, JHEP 06 (2013) 098 [arXiv:1304.5946] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    T. Banks and L.J. Dixon, Constraints on string vacua with space-time supersymmetry, Nucl. Phys. B 307 (1988) 93 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  39. [39]
    K. Lee and J.-H. Park, Covariant action for a string in “doubled yet gauged” spacetime, Nucl. Phys. B 880 (2014) 134 [arXiv:1307.8377] [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    J. de Boer and M. Shigemori, Exotic branes and non-geometric backgrounds, Phys. Rev. Lett. 104 (2010) 251603 [arXiv:1004.2521] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  41. [41]
    J. de Boer and M. Shigemori, Exotic branes in string theory, Phys. Rept. 532 (2013) 65 [arXiv:1209.6056] [INSPIRE].CrossRefADSGoogle Scholar
  42. [42]
    T. Kikuchi, T. Okada and Y. Sakatani, Rotating string in doubled geometry with generalized isometries, Phys. Rev. D 86 (2012) 046001 [arXiv:1205.5549] [INSPIRE].ADSGoogle Scholar
  43. [43]
    T. Kikuchi, T. Okada and Y. Sakatani, Generalized Lie transported string in T-fold with generalized Killing vector, Int. J. Mod. Phys. Conf. Ser. 21 (2013) 169 [INSPIRE].CrossRefGoogle Scholar
  44. [44]
    S. Kawai and Y. Sugawara, Mirrorfolds with K3 fibrations, JHEP 02 (2008) 065 [arXiv:0711.1045] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  45. [45]
    I. Vaisman, On the geometry of double field theory, J. Math. Phys. 53 (2012) 033509 [arXiv:1203.0836] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  46. [46]
    I. Vaisman, Towards a double field theory on para-Hermitian manifolds, J. Math. Phys. 54 (2013) 123507 [arXiv:1209.0152] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  47. [47]
    I. Vaisman, Geometry on big-tangent manifolds, arXiv:1303.0658 [INSPIRE].
  48. [48]
    N.J. Hitchin, Lectures on special Lagrangian submanifolds, math.DG/9907034 [INSPIRE].
  49. [49]
    P. Aschieri, I. Bakovic, B. Jurčo and P. Schupp, Noncommutative gerbes and deformation quantization, hep-th/0206101 [INSPIRE].
  50. [50]
    D.M. Belov, C.M. Hull and R. Minasian, T-duality, gerbes and loop spaces, arXiv:0710.5151 [INSPIRE].
  51. [51]
    C.M. Hull, U. Lindström, M. Roček, R. von Unge and M. Zabzine, Generalized Kähler geometry and gerbes, JHEP 10 (2009) 062 [arXiv:0811.3615] [INSPIRE].CrossRefADSGoogle Scholar
  52. [52]
    R. Blumenhagen, Nonassociativity in string theory, arXiv:1112.4611 [INSPIRE].
  53. [53]
    I. Bakas and D. Lüst, 3-cocycles, non-associative star-products and the magnetic paradigm of R-flux string vacua, JHEP 01 (2014) 171 [arXiv:1309.3172] [INSPIRE].CrossRefGoogle Scholar
  54. [54]
    R. Blumenhagen, M. Fuchs, F. Haßler, D. Lüst and R. Sun, Non-associative deformations of geometry in double field theory, JHEP 04 (2014) 141 [arXiv:1312.0719] [INSPIRE].CrossRefADSGoogle Scholar
  55. [55]
    D. Mylonas, P. Schupp and R.J. Szabo, Membrane σ-models and quantization of non-geometric flux backgrounds, JHEP 09 (2012) 012 [arXiv:1207.0926] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  56. [56]
    R. Blumenhagen, A. Deser, E. Plauschinn, F. Rennecke and C. Schmid, The intriguing structure of non-geometric frames in string theory, Fortsch. Phys. 61 (2013) 893 [arXiv:1304.2784] [INSPIRE].MathSciNetGoogle Scholar
  57. [57]
    R. Blumenhagen, A. Deser, E. Plauschinn, F. Rennecke and C. Schmid, The intriguing structure of non-geometric frames in string theory, Fortsch. Phys. 61 (2013) 893 [arXiv:1304.2784] [INSPIRE].MathSciNetGoogle Scholar
  58. [58]
    D.S. Berman, M. Cederwall, A. Kleinschmidt and D.C. Thompson, The gauge structure of generalised diffeomorphisms, JHEP 01 (2013) 064 [arXiv:1208.5884] [INSPIRE].CrossRefADSGoogle Scholar
  59. [59]
    O. Hohm and B. Zwiebach, On the Riemann tensor in double field theory, JHEP 05 (2012) 126 [arXiv:1112.5296] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  60. [60]
    C.M. Hull, Generalised geometry for M-theory, JHEP 07 (2007) 079 [hep-th/0701203] [INSPIRE].CrossRefADSGoogle Scholar
  61. [61]
    P.P. Pacheco and D. Waldram, M-theory, exceptional generalised geometry and superpotentials, JHEP 09 (2008) 123 [arXiv:0804.1362] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  62. [62]
    C. Hillmann, Generalized E 7(7) coset dynamics and D = 11 supergravity, JHEP 03 (2009) 135 [arXiv:0901.1581] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  63. [63]
    D.S. Berman and M.J. Perry, Generalized geometry and M-theory, JHEP 06 (2011) 074 [arXiv:1008.1763] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  64. [64]
    D.S. Berman, H. Godazgar and M.J. Perry, SO(5, 5) duality in M-theory and generalized geometry, Phys. Lett. B 700 (2011) 65 [arXiv:1103.5733] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  65. [65]
    D.S. Berman, H. Godazgar, M. Godazgar and M.J. Perry, The local symmetries of M-theory and their formulation in generalised geometry, JHEP 01 (2012) 012 [arXiv:1110.3930] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  66. [66]
    D.S. Berman, H. Godazgar, M.J. Perry and P. West, Duality invariant actions and generalised geometry, JHEP 02 (2012) 108 [arXiv:1111.0459] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  67. [67]
    A. Coimbra, C. Strickland-Constable and D. Waldram, E d(d) × + generalised geometry, connections and M-theory, JHEP 02 (2014) 054 [arXiv:1112.3989] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  68. [68]
    A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as generalised geometry II: E d(d) × + and M-theory, JHEP 03 (2014) 019 [arXiv:1212.1586] [INSPIRE].CrossRefADSGoogle Scholar
  69. [69]
    J.-H. Park and Y. Suh, U-geometry: SL(5), JHEP 04 (2013) 147 [Erratum ibid. 11 (2013) 210] [arXiv:1302.1652] [INSPIRE].
  70. [70]
    M. Cederwall, J. Edlund and A. Karlsson, Exceptional geometry and tensor fields, JHEP 07 (2013) 028 [arXiv:1302.6736] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  71. [71]
    M. Cederwall, Non-gravitational exceptional supermultiplets, JHEP 07 (2013) 025 [arXiv:1302.6737] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  72. [72]
    O. Hohm and H. Samtleben, Exceptional field theory I: E 6(6) covariant form of M-theory and type IIB, Phys. Rev. D 89 (2014) 066016 [arXiv:1312.0614] [INSPIRE].ADSGoogle Scholar
  73. [73]
    O. Hohm and H. Samtleben, Exceptional field theory II: E 7(7), Phys. Rev. D 89 (2014) 066017 [arXiv:1312.4542] [INSPIRE].ADSGoogle Scholar
  74. [74]
    G. Papadopoulos, Seeking the balance: patching double and exceptional field theories, arXiv:1402.2586 [INSPIRE].
  75. [75]
    C.M. Hull, Finite gauge transformations and geometry in double field theory, arXiv:1406.7794 [INSPIRE].

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • David S. Berman
    • 1
  • Martin Cederwall
    • 2
  • Malcolm J. Perry
    • 3
  1. 1.School of Physics and AstronomyQueen Mary University of LondonLondonU.K.
  2. 2.Dept. of Fundamental PhysicsChalmers University of TechnologyGothenburgSweden
  3. 3.DAMTP, Centre for Mathematical SciencesCambridgeU.K.

Personalised recommendations