Advertisement

Journal of High Energy Physics

, 2014:60 | Cite as

Heavy vector triplets: bridging theory and data

  • Duccio Pappadopulo
  • Andrea Thamm
  • Riccardo TorreEmail author
  • Andrea Wulzer
Open Access
Article

Abstract

We introduce a model-independent strategy to study narrow resonances which we apply to a heavy vector triplet of the Standard Model (SM) group for illustration. The method is based on a simplified phenomenological Lagrangian which reproduces a large class of explicit models. Firstly, this allows us to derive robust model-independent phenomenological features and, conversely, to identify the peculiarities of different explicit realizations. Secondly, limits on σ × BR can be converted into bounds on a few relevant parameters in a fully analytic way, allowing for an interpretation in any given explicit model. Based on the available 8 TeV LHC analyses, we derive current limits and interpret them for vector triplets arising in weakly coupled (gauge) and strongly coupled (composite) extensions of the SM. We point out that a model-independent limit setting procedure must be based on purely on-shell quantities, like σ × BR. Finite width effects altering the limits can be considerably reduced by focusing on the on-shell signal region. We illustrate this aspect with a study of the invariant mass distribution in di-lepton searches and the transverse mass distribution in lepton-neutrino final states. In addition to this paper we provide a set of online tools available at a dedicated webpage [1].

Keywords

Phenomenological Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D. Pappadopulo, A. Thamm, R. Torre and A. Wulzer, Tools for the study of heavy vector triplets webpage, http://heidi.pd.infn.it/html/vector/index.html, (2014).
  2. [2]
    LHC New Physics Working Group collaboration, D. Alves et al., Simplified models for LHC new physics searches, J. Phys. G 39 (2012) 105005 [arXiv:1105.2838] [INSPIRE].CrossRefADSGoogle Scholar
  3. [3]
    C.W. Bauer, Z. Ligeti, M. Schmaltz, J. Thaler and D.G.E. Walker, Supermodels for early LHC, Phys. Lett. B 690 (2010) 280 [arXiv:0909.5213] [INSPIRE].CrossRefADSGoogle Scholar
  4. [4]
    R. Barbieri and R. Torre, Signals of single particle production at the earliest LHC, Phys. Lett. B 695 (2011) 259 [arXiv:1008.5302] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    T. Han, I. Lewis and Z. Liu, Colored resonant signals at the LHC: largest rate and simplest topology, JHEP 12 (2010) 085 [arXiv:1010.4309] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    E. Accomando, A. Belyaev, L. Fedeli, S.F. King and C. Shepherd-Themistocleous, Zphysics with early LHC data, Phys. Rev. D 83 (2011) 075012 [arXiv:1010.6058] [INSPIRE].ADSGoogle Scholar
  7. [7]
    M. Schmaltz and C. Spethmann, Two simple W models for the early LHC, JHEP 07 (2011) 046 [arXiv:1011.5918] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    C. Grojean, E. Salvioni and R. Torre, A weakly constrained Wat the early LHC, JHEP 07 (2011) 002 [arXiv:1103.2761] [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    C.-W. Chiang, N.D. Christensen, G.-J. Ding and T. Han, Discovery in Drell-Yan processes at the LHC, Phys. Rev. D 85 (2012) 015023 [arXiv:1107.5830] [INSPIRE].ADSGoogle Scholar
  10. [10]
    R. Torre, Limits on leptophobic Wafter 1 fb−1 of LHC data: a lesson on parton level simulations, arXiv:1109.0890 [INSPIRE].
  11. [11]
    R. Torre, An isosinglet Wat the LHC: updated bounds from direct searches, PoS(CORFU2011)036 [arXiv:1204.4364] [INSPIRE].
  12. [12]
    J. de Blas, J.M. Lizana and M. Pérez-Victoria, Combining searches of Zand Wbosons, JHEP 01 (2013) 166 [arXiv:1211.2229] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    A. De Simone, O. Matsedonskyi, R. Rattazzi and A. Wulzer, A first top partner hunters guide, JHEP 04 (2013) 004 [arXiv:1211.5663] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    M. Buchkremer, G. Cacciapaglia, A. Deandrea and L. Panizzi, Model independent framework for searches of top partners, Nucl. Phys. B 876 (2013) 376 [arXiv:1305.4172] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    J.A. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer and M. Pérez-Victoria, Handbook of vectorlike quarks: mixing and single production, Phys. Rev. D 88 (2013) 094010 [arXiv:1306.0572] [INSPIRE].ADSGoogle Scholar
  16. [16]
    J.M. Lizana and M. Pérez-Victoria, Vector triplets at the LHC, EPJ Web Conf. 60 (2013) 17008 [arXiv:1307.2589] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    V.D. Barger, W.-Y. Keung and E. Ma, A gauge model with light W and Z bosons, Phys. Rev. D 22 (1980) 727 [INSPIRE].ADSGoogle Scholar
  18. [18]
    J.L. Hewett and T.G. Rizzo, Low-energy phenomenology of superstring inspired E 6 models, Phys. Rept. 183 (1989) 193 [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    M. Cvetič and S. Godfrey, Discovery and identification of extra gauge bosons, in Electroweak symmetry breaking and new physics at the TeV scale, T.L. Barklow et al. eds., (1995), pg. 383 [hep-ph/9504216] [INSPIRE].
  20. [20]
    T.G. Rizzo, Zphenomenology and the LHC, hep-ph/0610104 [INSPIRE].
  21. [21]
    P. Langacker, The physics of heavy Zgauge bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    E. Salvioni, G. Villadoro and F. Zwirner, Minimal Zmodels: present bounds and early LHC reach, JHEP 11 (2009) 068 [arXiv:0909.1320] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    E. Salvioni, A. Strumia, G. Villadoro and F. Zwirner, Non-universal minimal Zmodels: present bounds and early LHC reach, JHEP 03 (2010) 010 [arXiv:0911.1450] [INSPIRE].CrossRefADSGoogle Scholar
  24. [24]
    E. Salvioni, Minimal Zmodels and the early LHC, arXiv:1007.0490 [INSPIRE].
  25. [25]
    M.S. Chanowitz, A heavy little Higgs and a light Zunder the radar, Phys. Rev. D 84 (2011) 035014 [arXiv:1102.3672] [INSPIRE].ADSGoogle Scholar
  26. [26]
    E. Salvioni, Some Zand Wmodels facing current LHC searches, in 20th International Workshop on Deep-Inelastic Scattering and Related Subjects, DESY-PROC-2012-02, Germany (2012).
  27. [27]
    E. Accomando, D. Becciolini, A. Belyaev, S. Moretti and C. Shepherd-Themistocleous, Zat the LHC: interference and finite width effects in Drell-Yan, JHEP 10 (2013) 153 [arXiv:1304.6700] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    P. Langacker and S.U. Sankar, Bounds on the mass of W R and the W LW R mixing angle ζ in general SU(2)L × SU(2)R × U(1) models, Phys. Rev. D 40 (1989) 1569 [INSPIRE].ADSGoogle Scholar
  29. [29]
    Z. Sullivan, Fully differential Wproduction and decay at next-to-leading order in QCD, Phys. Rev. D 66 (2002) 075011 [hep-ph/0207290] [INSPIRE].ADSGoogle Scholar
  30. [30]
    T.G. Rizzo, The determination of the helicity of Wboson couplings at the LHC, JHEP 05 (2007) 037 [arXiv:0704.0235] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    M. Frank, A. Hayreter and I. Turan, Production and decays of W R bosons at the LHC, Phys. Rev. D 83 (2011) 035001 [arXiv:1010.5809] [INSPIRE].ADSGoogle Scholar
  32. [32]
    E. Accomando et al., Interference effects in heavy W-boson searches at the LHC, Phys. Rev. D 85 (2012) 115017 [arXiv:1110.0713] [INSPIRE].ADSGoogle Scholar
  33. [33]
    K. Agashe et al., LHC signals for warped electroweak neutral gauge bosons, Phys. Rev. D 76 (2007) 115015 [arXiv:0709.0007] [INSPIRE].ADSGoogle Scholar
  34. [34]
    K. Agashe, S. Gopalakrishna, T. Han, G.-Y. Huang and A. Soni, LHC signals for warped electroweak charged gauge bosons, Phys. Rev. D 80 (2009) 075007 [arXiv:0810.1497] [INSPIRE].ADSGoogle Scholar
  35. [35]
    K. Agashe et al., LHC signals for coset electroweak gauge bosons in warped/composite PGB Higgs models, Phys. Rev. D 81 (2010) 096002 [arXiv:0911.0059] [INSPIRE].ADSGoogle Scholar
  36. [36]
    R. Contino, D. Marzocca, D. Pappadopulo and R. Rattazzi, On the effect of resonances in composite Higgs phenomenology, JHEP 10 (2011) 081 [arXiv:1109.1570] [INSPIRE].CrossRefADSGoogle Scholar
  37. [37]
    B. Bellazzini, C. Csáki, J. Hubisz, J. Serra and J. Terning, Composite Higgs sketch, JHEP 11 (2012) 003 [arXiv:1205.4032] [INSPIRE].CrossRefADSGoogle Scholar
  38. [38]
    E. Accomando, L. Fedeli, S. Moretti, S. De Curtis and D. Dominici, Charged di-boson production at the LHC in a 4-site model with a composite Higgs boson, Phys. Rev. D 86 (2012) 115006 [arXiv:1208.0268] [INSPIRE].ADSGoogle Scholar
  39. [39]
    A.E. Cárcamo Hernández, C.O. Dib and A.R. Zerwekh, The effect of composite resonances on Higgs decay into two photons, Eur. Phys. J. C 74 (2014) 2822 [arXiv:1304.0286] [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    M.S. Chanowitz and W. Kilgore, Complementarity of resonant and nonresonant strong WW scattering at the LHC, Phys. Lett. B 322 (1994) 147 [hep-ph/9311336] [INSPIRE].CrossRefADSGoogle Scholar
  41. [41]
    R. Barbieri, G. Isidori, V.S. Rychkov and E. Trincherini, Heavy vectors in Higgs-less models, Phys. Rev. D 78 (2008) 036012 [arXiv:0806.1624] [INSPIRE].ADSGoogle Scholar
  42. [42]
    R. Barbieri, A.E. Cárcamo Hernández, G. Corcella, R. Torre and E. Trincherini, Composite vectors at the Large Hadron Collider, JHEP 03 (2010) 068 [arXiv:0911.1942] [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    R. Barbieri, S. Rychkov and R. Torre, Signals of composite electroweak-neutral dark matter: LHC/direct detection interplay, Phys. Lett. B 688 (2010) 212 [arXiv:1001.3149] [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    A.E. Cárcamo Hernández and R. Torre, Acompositescalar-vector system at the LHC, Nucl. Phys. B 841 (2010) 188 [arXiv:1005.3809] [INSPIRE].CrossRefGoogle Scholar
  45. [45]
    A.E. Cárcamo Hernández, Top quark effects in composite vector pair production at the LHC, Eur. Phys. J. C 72 (2012) 2154 [arXiv:1008.1039] [INSPIRE].CrossRefGoogle Scholar
  46. [46]
    O. Catà, G. Isidori and J.F. Kamenik, Drell-Yan production of heavy vectors in Higgsless models, Nucl. Phys. B 822 (2009) 230 [arXiv:0905.0490] [INSPIRE].CrossRefADSGoogle Scholar
  47. [47]
    E. Accomando, D. Becciolini, S. De Curtis, D. Dominici and L. Fedeli, Wproduction at the LHC in the 4-site Higgsless model, Phys. Rev. D 84 (2011) 115014 [arXiv:1107.4087] [INSPIRE].ADSGoogle Scholar
  48. [48]
    A. Falkowski, C. Grojean, A. Kaminska, S. Pokorski and A. Weiler, If no Higgs then what?, JHEP 11 (2011) 028 [arXiv:1108.1183] [INSPIRE].CrossRefADSGoogle Scholar
  49. [49]
    ATLAS collaboration, Measurement of W γ and Zγ production cross sections in pp collisions at \( \sqrt{s} \) = 7 TeV and limits on anomalous triple gauge couplings with the ATLAS detector, Phys. Lett. B 717 (2012) 49 [arXiv:1205.2531] [INSPIRE].ADSGoogle Scholar
  50. [50]
    ATLAS collaboration, Measurement of W Z production in proton-proton collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Eur. Phys. J. C 72 (2012) 2173 [arXiv:1208.1390] [INSPIRE].ADSGoogle Scholar
  51. [51]
    ATLAS collaboration, Search for exotic same-sign dilepton signatures (bquark, T 5/3 and four top quarks production) in 4.7 fb−1 of pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, ATLAS-CONF-2012-130, CERN, Geneva Switzerland (2012).
  52. [52]
    ATLAS collaboration, Search for resonant ZZ production in the ZZℓℓqq channel with the ATLAS detector using 7.2 fb−1 of \( \sqrt{s} \) = 8 TeV pp collision data, ATLAS-CONF-2012-150, CERN, Geneva Switzerland (2012).
  53. [53]
    ATLAS collaboration, Search for W ′ → \( t\overline{b} \) in proton-proton collisions at a centre-of-mass energy of \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-050, CERN, Geneva Switzerland (2013).
  54. [54]
    ATLAS collaboration, A search for \( t\overline{t} \) resonances in the lepton plus jets final state with ATLAS using 14 fb−1 of pp collisions at \( \sqrt{s} \) = 8 TeV, ATLAS-CONF-2013-052, CERN, Geneva Switzerland (2013).
  55. [55]
    ATLAS collaboration, A search for high-mass ditau resonances decaying in the fully hadronic final state in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-066, CERN, Geneva Switzerland (2013).
  56. [56]
    ATLAS collaboration, Search for high-mass states with one lepton plus missing transverse momentum in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2014-017, CERN, Geneva Switzerland (2014).
  57. [57]
    ATLAS collaboration, Search for high-mass dilepton resonances in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, arXiv:1405.4123 [INSPIRE].
  58. [58]
    ATLAS collaboration, Search for WZ resonances in the fully leptonic channel using pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, arXiv:1406.4456 [INSPIRE].
  59. [59]
    ATLAS collaboration, Search for new phenomena in the dijet mass distribution using pp collision data at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, arXiv:1407.1376 [INSPIRE].
  60. [60]
    CMS collaboration, Search for new resonances decaying to WW\( \mathit{\ell \nu q}\overline{q} \) in the final state with a lepton, missing transverse energy and single reconstructed jet, CMS-PAS-EXO-12-021, CERN, Geneva Switzerland (2012).
  61. [61]
    CMS collaboration, Search for a narrow spin-2 resonance decaying to Z bosons in the semileptonic final state, CMS-PAS-EXO-12-022, CERN, Geneva Switzerland (2012).
  62. [62]
    CMS collaboration, Search for heavy resonances decaying into bb and bg final states in pp collisions at \( \sqrt{s} \) = 8 TeV, CMS-PAS-EXO-12-023, CERN, Geneva Switzerland (2012).
  63. [63]
    CMS collaboration, Search for heavy resonances in the W/Z-tagged dijet mass spectrum in pp collisions at 8 TeV, CMS-PAS-EXO-12-024, CERN, Geneva Switzerland (2012).
  64. [64]
    CMS collaboration, Search for narrow resonances using the dijet mass spectrum with 19.6 fb−1 of pp collisions at \( \sqrt{s} \) = 8 TeV, CMS-PAS-EXO-12-059, CERN, Geneva Switzerland (2012).
  65. [65]
    CMS collaboration, Search for leptonic decays of Wbosons in pp collisions at \( \sqrt{s} \) = 8 TeV, CMS-PAS-EXO-12-060, CERN, Geneva Switzerland (2012).
  66. [66]
    CMS collaboration, Search for resonances in the dilepton mass distribution in pp collisions at \( \sqrt{s} \) = 8 TeV, CMS-PAS-EXO-12-061, CERN, Geneva Switzerland (2012).
  67. [67]
    CMS collaboration, Search for anomalous top quark pair production in the boosted all-hadronic final state using pp collisions at \( \sqrt{s} \) = 8 TeV, CMS-PAS-B2G-12-005, CERN, Geneva Switzerland (2012).
  68. [68]
    CMS collaboration, Search for narrow t + b resonances in the leptonic final state at \( \sqrt{s} \) = 8 TeV, CMS-PAS-B2G-12-010, CERN, Geneva Switzerland (2012).
  69. [69]
    CMS collaboration, Search for new resonances decaying via WZ to leptons in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, arXiv:1407.3476 [INSPIRE].
  70. [70]
    M.S. Chanowitz and M.K. Gaillard, The TeV physics of strongly interacting Ws and Zs, Nucl. Phys. B 261 (1985) 379 [INSPIRE].CrossRefADSGoogle Scholar
  71. [71]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].CrossRefADSGoogle Scholar
  72. [72]
    F. del Aguila, J. de Blas and M. Pérez-Victoria, Electroweak limits on general new vector bosons, JHEP 09 (2010) 033 [arXiv:1005.3998] [INSPIRE].CrossRefGoogle Scholar
  73. [73]
    M. Ciuchini, E. Franco, S. Mishima and L. Silvestrini, Electroweak precision observables, new physics and the nature of a 126 GeV Higgs boson, JHEP 08 (2013) 106 [arXiv:1306.4644] [INSPIRE].CrossRefADSGoogle Scholar
  74. [74]
    R. Contino, C. Grojean, D. Pappadopulo, R. Rattazzi and A. Thamm, Strong Higgs interactions at a linear collider, JHEP 02 (2014) 006 [arXiv:1309.7038] [INSPIRE].CrossRefGoogle Scholar
  75. [75]
    G. Panico and A. Wulzer, The discrete composite Higgs model, JHEP 09 (2011) 135 [arXiv:1106.2719] [INSPIRE].CrossRefADSGoogle Scholar
  76. [76]
    O. Matsedonskyi, G. Panico and A. Wulzer, Light top partners for a light composite Higgs, JHEP 01 (2013) 164 [arXiv:1204.6333] [INSPIRE].CrossRefADSGoogle Scholar
  77. [77]
    Z. Chacko, R. Franceschini and R.K. Mishra, Resonance at 125 GeV: Higgs or dilaton/radion?, JHEP 04 (2013) 015 [arXiv:1209.3259] [INSPIRE].CrossRefADSGoogle Scholar
  78. [78]
    B. Bellazzini, C. Csáki, J. Hubisz, J. Serra and J. Terning, A Higgslike dilaton, Eur. Phys. J. C 73 (2013) 2333 [arXiv:1209.3299] [INSPIRE].CrossRefADSGoogle Scholar
  79. [79]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].ADSGoogle Scholar
  80. [80]
    R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].CrossRefADSGoogle Scholar
  81. [81]
    G. Cacciapaglia, C. Csáki, G. Marandella and A. Strumia, The minimal set of electroweak precision parameters, Phys. Rev. D 74 (2006) 033011 [hep-ph/0604111] [INSPIRE].ADSGoogle Scholar
  82. [82]
    A. Wulzer, An equivalent gauge and the equivalence theorem, arXiv:1309.6055 [INSPIRE].
  83. [83]
    O. Domenech, A. Pomarol and J. Serra, Probing the SM with dijets at the LHC, Phys. Rev. D 85 (2012) 074030 [arXiv:1201.6510] [INSPIRE].ADSGoogle Scholar
  84. [84]
    J. de Blas, M. Chala and J. Santiago, Global constraints on lepton-quark contact interactions, Phys. Rev. D 88 (2013) 095011 [arXiv:1307.5068] [INSPIRE].ADSGoogle Scholar
  85. [85]
    S. Dawson, The effective W approximation, Nucl. Phys. B 249 (1985) 42 [INSPIRE].CrossRefADSGoogle Scholar
  86. [86]
    R. Torre, Signals of composite particles at the LHC, Ph.D. thesis, Università di Pisa, Pisa Italy (2011) [arXiv:1110.3906] [INSPIRE].
  87. [87]
    P. Borel, R. Franceschini, R. Rattazzi and A. Wulzer, Probing the scattering of equivalent electroweak bosons, JHEP 06 (2012) 122 [arXiv:1202.1904] [INSPIRE].CrossRefADSGoogle Scholar
  88. [88]
    T. Han, P. Langacker, Z. Liu and L.-T. Wang, Diagnosis of a new neutral gauge boson at the LHC and ILC for Snowmass 2013, arXiv:1308.2738 [INSPIRE].
  89. [89]
    D. Hayden, R. Brock and C. Willis, Z prime: a story, arXiv:1308.5874 [INSPIRE].
  90. [90]
    S. Godfrey and T. Martin, Zdiscovery reach at future hadron colliders: a Snowmass white paper, arXiv:1309.1688 [INSPIRE].
  91. [91]
    A. Katz, M. Son and B. Tweedie, Jet substructure and the search for neutral spin-one resonances in electroweak boson channels, JHEP 03 (2011) 011 [arXiv:1010.5253] [INSPIRE].CrossRefADSGoogle Scholar
  92. [92]
    A. Katz, M. Son and B. Tweedie, Ditau-jet tagging and boosted higgses from a multi-TeV resonance, Phys. Rev. D 83 (2011) 114033 [arXiv:1011.4523] [INSPIRE].ADSGoogle Scholar
  93. [93]
    M. Son, C. Spethmann and B. Tweedie, Diboson-jets and the search for resonant Zh production, JHEP 08 (2012) 160 [arXiv:1204.0525] [INSPIRE].CrossRefADSGoogle Scholar
  94. [94]
    D. Choudhury, R.M. Godbole and P. Saha, Dijet resonances, widths and all that, JHEP 01 (2012) 155 [arXiv:1111.1054] [INSPIRE].CrossRefADSGoogle Scholar
  95. [95]
    ATLAS collaboration, Search for high-mass dilepton resonances in 20 fb−1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS experiment, ATLAS-CONF-2013-017, CERN, Geneva Switzerland (2013).
  96. [96]
    ATLAS collaboration, Search for new phenomena in the dijet mass distribution updated using 13.0 fb−1 of pp collisions at \( \sqrt{s} \) = 8 TeV collected by the ATLAS detector, ATLAS-CONF-2012-148, CERN, Geneva Switzerland (2012).
  97. [97]
    ATLAS collaboration, Search for resonant WZ → 3ℓν production in \( \sqrt{s} \) = 8 TeV pp collisions with 13 fb−1 at ATLAS, ATLAS-CONF-2013-015, CERN, Geneva Switzerland (2013).
  98. [98]
    CMS collaboration, Search for W/technirho in WZ using leptonic final states, CMS-PAS-EXO-12-025, CERN, Geneva Switzerland (2012).
  99. [99]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].CrossRefADSGoogle Scholar
  100. [100]
    C. Duhr, N.D. Christensen and B. Fuks, FeynRulesa Mathematica package to calculate Feynman rules webpage, http://feynrules.irmp.ucl.ac.be/.
  101. [101]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].CrossRefzbMATHADSGoogle Scholar
  102. [102]
    A. Belyaev, N. Christensen and A. Pukhov, CalcHEPa package for calculation of Feynman diagrams and integration over multi-particle phase space webpage, http://theory.sinp.msu.ru/∼pukhov/calchep.html, (2005).
  103. [103]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].CrossRefADSGoogle Scholar
  104. [104]
    High energy physics models database webpage, http://hepmdb.soton.ac.uk/.
  105. [105]
    D. Pappadopulo, A. Thamm, R. Torre and A. Wulzer, Vector triplet (bridge model) webpage, http://hepmdb.soton.ac.uk/hepmdb:0214.0151.
  106. [106]
    R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong double Higgs production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].CrossRefADSGoogle Scholar
  107. [107]
    Wolfram research, Computable document format webpage, http://www.wolfram.com/cdf/.

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Duccio Pappadopulo
    • 1
    • 2
  • Andrea Thamm
    • 3
  • Riccardo Torre
    • 4
    • 5
    • 6
    Email author
  • Andrea Wulzer
    • 4
    • 5
  1. 1.Department of PhysicsUniversity of CaliforniaBerkeleyU.S.A.
  2. 2.Theoretical Physics GroupLawrence Berkeley National LaboratoryBerkeleyU.S.A.
  3. 3.Institut de Théorie des Phénomènes Physiques, EPFLLausanneSwitzerland
  4. 4.Dipartimento di Fisica e AstronomiaUniversità di PadovaPadovaItaly
  5. 5.INFN, Sezione di PadovaPadovaItaly
  6. 6.SISSATriesteItaly

Personalised recommendations