Heavy vector triplets: bridging theory and data

Abstract

We introduce a model-independent strategy to study narrow resonances which we apply to a heavy vector triplet of the Standard Model (SM) group for illustration. The method is based on a simplified phenomenological Lagrangian which reproduces a large class of explicit models. Firstly, this allows us to derive robust model-independent phenomenological features and, conversely, to identify the peculiarities of different explicit realizations. Secondly, limits on σ × BR can be converted into bounds on a few relevant parameters in a fully analytic way, allowing for an interpretation in any given explicit model. Based on the available 8 TeV LHC analyses, we derive current limits and interpret them for vector triplets arising in weakly coupled (gauge) and strongly coupled (composite) extensions of the SM. We point out that a model-independent limit setting procedure must be based on purely on-shell quantities, like σ × BR. Finite width effects altering the limits can be considerably reduced by focusing on the on-shell signal region. We illustrate this aspect with a study of the invariant mass distribution in di-lepton searches and the transverse mass distribution in lepton-neutrino final states. In addition to this paper we provide a set of online tools available at a dedicated webpage [1].

A preprint version of the article is available at ArXiv.

References

  1. [1]

    D. Pappadopulo, A. Thamm, R. Torre and A. Wulzer, Tools for the study of heavy vector triplets webpage, http://heidi.pd.infn.it/html/vector/index.html, (2014).

  2. [2]

    LHC New Physics Working Group collaboration, D. Alves et al., Simplified models for LHC new physics searches, J. Phys. G 39 (2012) 105005 [arXiv:1105.2838] [INSPIRE].

    Article  ADS  Google Scholar 

  3. [3]

    C.W. Bauer, Z. Ligeti, M. Schmaltz, J. Thaler and D.G.E. Walker, Supermodels for early LHC, Phys. Lett. B 690 (2010) 280 [arXiv:0909.5213] [INSPIRE].

    Article  ADS  Google Scholar 

  4. [4]

    R. Barbieri and R. Torre, Signals of single particle production at the earliest LHC, Phys. Lett. B 695 (2011) 259 [arXiv:1008.5302] [INSPIRE].

    Article  ADS  Google Scholar 

  5. [5]

    T. Han, I. Lewis and Z. Liu, Colored resonant signals at the LHC: largest rate and simplest topology, JHEP 12 (2010) 085 [arXiv:1010.4309] [INSPIRE].

    Article  ADS  Google Scholar 

  6. [6]

    E. Accomando, A. Belyaev, L. Fedeli, S.F. King and C. Shepherd-Themistocleous, Zphysics with early LHC data, Phys. Rev. D 83 (2011) 075012 [arXiv:1010.6058] [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    M. Schmaltz and C. Spethmann, Two simple W models for the early LHC, JHEP 07 (2011) 046 [arXiv:1011.5918] [INSPIRE].

    Article  ADS  Google Scholar 

  8. [8]

    C. Grojean, E. Salvioni and R. Torre, A weakly constrained Wat the early LHC, JHEP 07 (2011) 002 [arXiv:1103.2761] [INSPIRE].

    Article  ADS  Google Scholar 

  9. [9]

    C.-W. Chiang, N.D. Christensen, G.-J. Ding and T. Han, Discovery in Drell-Yan processes at the LHC, Phys. Rev. D 85 (2012) 015023 [arXiv:1107.5830] [INSPIRE].

    ADS  Google Scholar 

  10. [10]

    R. Torre, Limits on leptophobic Wafter 1 fb−1 of LHC data: a lesson on parton level simulations, arXiv:1109.0890 [INSPIRE].

  11. [11]

    R. Torre, An isosinglet Wat the LHC: updated bounds from direct searches, PoS(CORFU2011)036 [arXiv:1204.4364] [INSPIRE].

  12. [12]

    J. de Blas, J.M. Lizana and M. Pérez-Victoria, Combining searches of Zand Wbosons, JHEP 01 (2013) 166 [arXiv:1211.2229] [INSPIRE].

    Article  ADS  Google Scholar 

  13. [13]

    A. De Simone, O. Matsedonskyi, R. Rattazzi and A. Wulzer, A first top partner hunters guide, JHEP 04 (2013) 004 [arXiv:1211.5663] [INSPIRE].

    Article  Google Scholar 

  14. [14]

    M. Buchkremer, G. Cacciapaglia, A. Deandrea and L. Panizzi, Model independent framework for searches of top partners, Nucl. Phys. B 876 (2013) 376 [arXiv:1305.4172] [INSPIRE].

    Article  ADS  Google Scholar 

  15. [15]

    J.A. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer and M. Pérez-Victoria, Handbook of vectorlike quarks: mixing and single production, Phys. Rev. D 88 (2013) 094010 [arXiv:1306.0572] [INSPIRE].

    ADS  Google Scholar 

  16. [16]

    J.M. Lizana and M. Pérez-Victoria, Vector triplets at the LHC, EPJ Web Conf. 60 (2013) 17008 [arXiv:1307.2589] [INSPIRE].

    Article  Google Scholar 

  17. [17]

    V.D. Barger, W.-Y. Keung and E. Ma, A gauge model with light W and Z bosons, Phys. Rev. D 22 (1980) 727 [INSPIRE].

    ADS  Google Scholar 

  18. [18]

    J.L. Hewett and T.G. Rizzo, Low-energy phenomenology of superstring inspired E 6 models, Phys. Rept. 183 (1989) 193 [INSPIRE].

    Article  ADS  Google Scholar 

  19. [19]

    M. Cvetič and S. Godfrey, Discovery and identification of extra gauge bosons, in Electroweak symmetry breaking and new physics at the TeV scale, T.L. Barklow et al. eds., (1995), pg. 383 [hep-ph/9504216] [INSPIRE].

  20. [20]

    T.G. Rizzo, Zphenomenology and the LHC, hep-ph/0610104 [INSPIRE].

  21. [21]

    P. Langacker, The physics of heavy Zgauge bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].

    Article  ADS  Google Scholar 

  22. [22]

    E. Salvioni, G. Villadoro and F. Zwirner, Minimal Zmodels: present bounds and early LHC reach, JHEP 11 (2009) 068 [arXiv:0909.1320] [INSPIRE].

    Article  ADS  Google Scholar 

  23. [23]

    E. Salvioni, A. Strumia, G. Villadoro and F. Zwirner, Non-universal minimal Zmodels: present bounds and early LHC reach, JHEP 03 (2010) 010 [arXiv:0911.1450] [INSPIRE].

    Article  ADS  Google Scholar 

  24. [24]

    E. Salvioni, Minimal Zmodels and the early LHC, arXiv:1007.0490 [INSPIRE].

  25. [25]

    M.S. Chanowitz, A heavy little Higgs and a light Zunder the radar, Phys. Rev. D 84 (2011) 035014 [arXiv:1102.3672] [INSPIRE].

    ADS  Google Scholar 

  26. [26]

    E. Salvioni, Some Zand Wmodels facing current LHC searches, in 20th International Workshop on Deep-Inelastic Scattering and Related Subjects, DESY-PROC-2012-02, Germany (2012).

  27. [27]

    E. Accomando, D. Becciolini, A. Belyaev, S. Moretti and C. Shepherd-Themistocleous, Zat the LHC: interference and finite width effects in Drell-Yan, JHEP 10 (2013) 153 [arXiv:1304.6700] [INSPIRE].

    Article  ADS  Google Scholar 

  28. [28]

    P. Langacker and S.U. Sankar, Bounds on the mass of W R and the W L W R mixing angle ζ in general SU(2) L × SU(2) R × U(1) models, Phys. Rev. D 40 (1989) 1569 [INSPIRE].

    ADS  Google Scholar 

  29. [29]

    Z. Sullivan, Fully differential Wproduction and decay at next-to-leading order in QCD, Phys. Rev. D 66 (2002) 075011 [hep-ph/0207290] [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    T.G. Rizzo, The determination of the helicity of Wboson couplings at the LHC, JHEP 05 (2007) 037 [arXiv:0704.0235] [INSPIRE].

    Article  ADS  Google Scholar 

  31. [31]

    M. Frank, A. Hayreter and I. Turan, Production and decays of W R bosons at the LHC, Phys. Rev. D 83 (2011) 035001 [arXiv:1010.5809] [INSPIRE].

    ADS  Google Scholar 

  32. [32]

    E. Accomando et al., Interference effects in heavy W-boson searches at the LHC, Phys. Rev. D 85 (2012) 115017 [arXiv:1110.0713] [INSPIRE].

    ADS  Google Scholar 

  33. [33]

    K. Agashe et al., LHC signals for warped electroweak neutral gauge bosons, Phys. Rev. D 76 (2007) 115015 [arXiv:0709.0007] [INSPIRE].

    ADS  Google Scholar 

  34. [34]

    K. Agashe, S. Gopalakrishna, T. Han, G.-Y. Huang and A. Soni, LHC signals for warped electroweak charged gauge bosons, Phys. Rev. D 80 (2009) 075007 [arXiv:0810.1497] [INSPIRE].

    ADS  Google Scholar 

  35. [35]

    K. Agashe et al., LHC signals for coset electroweak gauge bosons in warped/composite PGB Higgs models, Phys. Rev. D 81 (2010) 096002 [arXiv:0911.0059] [INSPIRE].

    ADS  Google Scholar 

  36. [36]

    R. Contino, D. Marzocca, D. Pappadopulo and R. Rattazzi, On the effect of resonances in composite Higgs phenomenology, JHEP 10 (2011) 081 [arXiv:1109.1570] [INSPIRE].

    Article  ADS  Google Scholar 

  37. [37]

    B. Bellazzini, C. Csáki, J. Hubisz, J. Serra and J. Terning, Composite Higgs sketch, JHEP 11 (2012) 003 [arXiv:1205.4032] [INSPIRE].

    Article  ADS  Google Scholar 

  38. [38]

    E. Accomando, L. Fedeli, S. Moretti, S. De Curtis and D. Dominici, Charged di-boson production at the LHC in a 4-site model with a composite Higgs boson, Phys. Rev. D 86 (2012) 115006 [arXiv:1208.0268] [INSPIRE].

    ADS  Google Scholar 

  39. [39]

    A.E. Cárcamo Hernández, C.O. Dib and A.R. Zerwekh, The effect of composite resonances on Higgs decay into two photons, Eur. Phys. J. C 74 (2014) 2822 [arXiv:1304.0286] [INSPIRE].

    Article  ADS  Google Scholar 

  40. [40]

    M.S. Chanowitz and W. Kilgore, Complementarity of resonant and nonresonant strong WW scattering at the LHC, Phys. Lett. B 322 (1994) 147 [hep-ph/9311336] [INSPIRE].

    Article  ADS  Google Scholar 

  41. [41]

    R. Barbieri, G. Isidori, V.S. Rychkov and E. Trincherini, Heavy vectors in Higgs-less models, Phys. Rev. D 78 (2008) 036012 [arXiv:0806.1624] [INSPIRE].

    ADS  Google Scholar 

  42. [42]

    R. Barbieri, A.E. Cárcamo Hernández, G. Corcella, R. Torre and E. Trincherini, Composite vectors at the Large Hadron Collider, JHEP 03 (2010) 068 [arXiv:0911.1942] [INSPIRE].

    Article  ADS  Google Scholar 

  43. [43]

    R. Barbieri, S. Rychkov and R. Torre, Signals of composite electroweak-neutral dark matter: LHC/direct detection interplay, Phys. Lett. B 688 (2010) 212 [arXiv:1001.3149] [INSPIRE].

    Article  ADS  Google Scholar 

  44. [44]

    A.E. Cárcamo Hernández and R. Torre, Acompositescalar-vector system at the LHC, Nucl. Phys. B 841 (2010) 188 [arXiv:1005.3809] [INSPIRE].

    Article  Google Scholar 

  45. [45]

    A.E. Cárcamo Hernández, Top quark effects in composite vector pair production at the LHC, Eur. Phys. J. C 72 (2012) 2154 [arXiv:1008.1039] [INSPIRE].

    Article  Google Scholar 

  46. [46]

    O. Catà, G. Isidori and J.F. Kamenik, Drell-Yan production of heavy vectors in Higgsless models, Nucl. Phys. B 822 (2009) 230 [arXiv:0905.0490] [INSPIRE].

    Article  ADS  Google Scholar 

  47. [47]

    E. Accomando, D. Becciolini, S. De Curtis, D. Dominici and L. Fedeli, Wproduction at the LHC in the 4-site Higgsless model, Phys. Rev. D 84 (2011) 115014 [arXiv:1107.4087] [INSPIRE].

    ADS  Google Scholar 

  48. [48]

    A. Falkowski, C. Grojean, A. Kaminska, S. Pokorski and A. Weiler, If no Higgs then what?, JHEP 11 (2011) 028 [arXiv:1108.1183] [INSPIRE].

    Article  ADS  Google Scholar 

  49. [49]

    ATLAS collaboration, Measurement of W γ and Zγ production cross sections in pp collisions at \( \sqrt{s} \) = 7 TeV and limits on anomalous triple gauge couplings with the ATLAS detector, Phys. Lett. B 717 (2012) 49 [arXiv:1205.2531] [INSPIRE].

    ADS  Google Scholar 

  50. [50]

    ATLAS collaboration, Measurement of W Z production in proton-proton collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Eur. Phys. J. C 72 (2012) 2173 [arXiv:1208.1390] [INSPIRE].

    ADS  Google Scholar 

  51. [51]

    ATLAS collaboration, Search for exotic same-sign dilepton signatures (bquark, T 5/3 and four top quarks production) in 4.7 fb−1 of pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, ATLAS-CONF-2012-130, CERN, Geneva Switzerland (2012).

  52. [52]

    ATLAS collaboration, Search for resonant ZZ production in the ZZℓℓqq channel with the ATLAS detector using 7.2 fb−1 of \( \sqrt{s} \) = 8 TeV pp collision data, ATLAS-CONF-2012-150, CERN, Geneva Switzerland (2012).

  53. [53]

    ATLAS collaboration, Search for W ′ → \( t\overline{b} \) in proton-proton collisions at a centre-of-mass energy of \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-050, CERN, Geneva Switzerland (2013).

  54. [54]

    ATLAS collaboration, A search for \( t\overline{t} \) resonances in the lepton plus jets final state with ATLAS using 14 fb−1 of pp collisions at \( \sqrt{s} \) = 8 TeV, ATLAS-CONF-2013-052, CERN, Geneva Switzerland (2013).

  55. [55]

    ATLAS collaboration, A search for high-mass ditau resonances decaying in the fully hadronic final state in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-066, CERN, Geneva Switzerland (2013).

  56. [56]

    ATLAS collaboration, Search for high-mass states with one lepton plus missing transverse momentum in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2014-017, CERN, Geneva Switzerland (2014).

  57. [57]

    ATLAS collaboration, Search for high-mass dilepton resonances in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, arXiv:1405.4123 [INSPIRE].

  58. [58]

    ATLAS collaboration, Search for WZ resonances in the fully leptonic channel using pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, arXiv:1406.4456 [INSPIRE].

  59. [59]

    ATLAS collaboration, Search for new phenomena in the dijet mass distribution using pp collision data at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, arXiv:1407.1376 [INSPIRE].

  60. [60]

    CMS collaboration, Search for new resonances decaying to WW\( \mathit{\ell \nu q}\overline{q} \) in the final state with a lepton, missing transverse energy and single reconstructed jet, CMS-PAS-EXO-12-021, CERN, Geneva Switzerland (2012).

  61. [61]

    CMS collaboration, Search for a narrow spin-2 resonance decaying to Z bosons in the semileptonic final state, CMS-PAS-EXO-12-022, CERN, Geneva Switzerland (2012).

  62. [62]

    CMS collaboration, Search for heavy resonances decaying into bb and bg final states in pp collisions at \( \sqrt{s} \) = 8 TeV, CMS-PAS-EXO-12-023, CERN, Geneva Switzerland (2012).

  63. [63]

    CMS collaboration, Search for heavy resonances in the W/Z-tagged dijet mass spectrum in pp collisions at 8 TeV, CMS-PAS-EXO-12-024, CERN, Geneva Switzerland (2012).

  64. [64]

    CMS collaboration, Search for narrow resonances using the dijet mass spectrum with 19.6 fb−1 of pp collisions at \( \sqrt{s} \) = 8 TeV, CMS-PAS-EXO-12-059, CERN, Geneva Switzerland (2012).

  65. [65]

    CMS collaboration, Search for leptonic decays of Wbosons in pp collisions at \( \sqrt{s} \) = 8 TeV, CMS-PAS-EXO-12-060, CERN, Geneva Switzerland (2012).

  66. [66]

    CMS collaboration, Search for resonances in the dilepton mass distribution in pp collisions at \( \sqrt{s} \) = 8 TeV, CMS-PAS-EXO-12-061, CERN, Geneva Switzerland (2012).

  67. [67]

    CMS collaboration, Search for anomalous top quark pair production in the boosted all-hadronic final state using pp collisions at \( \sqrt{s} \) = 8 TeV, CMS-PAS-B2G-12-005, CERN, Geneva Switzerland (2012).

  68. [68]

    CMS collaboration, Search for narrow t + b resonances in the leptonic final state at \( \sqrt{s} \) = 8 TeV, CMS-PAS-B2G-12-010, CERN, Geneva Switzerland (2012).

  69. [69]

    CMS collaboration, Search for new resonances decaying via WZ to leptons in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, arXiv:1407.3476 [INSPIRE].

  70. [70]

    M.S. Chanowitz and M.K. Gaillard, The TeV physics of strongly interacting Ws and Zs, Nucl. Phys. B 261 (1985) 379 [INSPIRE].

    Article  ADS  Google Scholar 

  71. [71]

    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

    Article  ADS  Google Scholar 

  72. [72]

    F. del Aguila, J. de Blas and M. Pérez-Victoria, Electroweak limits on general new vector bosons, JHEP 09 (2010) 033 [arXiv:1005.3998] [INSPIRE].

    Article  Google Scholar 

  73. [73]

    M. Ciuchini, E. Franco, S. Mishima and L. Silvestrini, Electroweak precision observables, new physics and the nature of a 126 GeV Higgs boson, JHEP 08 (2013) 106 [arXiv:1306.4644] [INSPIRE].

    Article  ADS  Google Scholar 

  74. [74]

    R. Contino, C. Grojean, D. Pappadopulo, R. Rattazzi and A. Thamm, Strong Higgs interactions at a linear collider, JHEP 02 (2014) 006 [arXiv:1309.7038] [INSPIRE].

    Article  Google Scholar 

  75. [75]

    G. Panico and A. Wulzer, The discrete composite Higgs model, JHEP 09 (2011) 135 [arXiv:1106.2719] [INSPIRE].

    Article  ADS  Google Scholar 

  76. [76]

    O. Matsedonskyi, G. Panico and A. Wulzer, Light top partners for a light composite Higgs, JHEP 01 (2013) 164 [arXiv:1204.6333] [INSPIRE].

    Article  ADS  Google Scholar 

  77. [77]

    Z. Chacko, R. Franceschini and R.K. Mishra, Resonance at 125 GeV: Higgs or dilaton/radion?, JHEP 04 (2013) 015 [arXiv:1209.3259] [INSPIRE].

    Article  ADS  Google Scholar 

  78. [78]

    B. Bellazzini, C. Csáki, J. Hubisz, J. Serra and J. Terning, A Higgslike dilaton, Eur. Phys. J. C 73 (2013) 2333 [arXiv:1209.3299] [INSPIRE].

    Article  ADS  Google Scholar 

  79. [79]

    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

    ADS  Google Scholar 

  80. [80]

    R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].

    Article  ADS  Google Scholar 

  81. [81]

    G. Cacciapaglia, C. Csáki, G. Marandella and A. Strumia, The minimal set of electroweak precision parameters, Phys. Rev. D 74 (2006) 033011 [hep-ph/0604111] [INSPIRE].

    ADS  Google Scholar 

  82. [82]

    A. Wulzer, An equivalent gauge and the equivalence theorem, arXiv:1309.6055 [INSPIRE].

  83. [83]

    O. Domenech, A. Pomarol and J. Serra, Probing the SM with dijets at the LHC, Phys. Rev. D 85 (2012) 074030 [arXiv:1201.6510] [INSPIRE].

    ADS  Google Scholar 

  84. [84]

    J. de Blas, M. Chala and J. Santiago, Global constraints on lepton-quark contact interactions, Phys. Rev. D 88 (2013) 095011 [arXiv:1307.5068] [INSPIRE].

    ADS  Google Scholar 

  85. [85]

    S. Dawson, The effective W approximation, Nucl. Phys. B 249 (1985) 42 [INSPIRE].

    Article  ADS  Google Scholar 

  86. [86]

    R. Torre, Signals of composite particles at the LHC, Ph.D. thesis, Università di Pisa, Pisa Italy (2011) [arXiv:1110.3906] [INSPIRE].

  87. [87]

    P. Borel, R. Franceschini, R. Rattazzi and A. Wulzer, Probing the scattering of equivalent electroweak bosons, JHEP 06 (2012) 122 [arXiv:1202.1904] [INSPIRE].

    Article  ADS  Google Scholar 

  88. [88]

    T. Han, P. Langacker, Z. Liu and L.-T. Wang, Diagnosis of a new neutral gauge boson at the LHC and ILC for Snowmass 2013, arXiv:1308.2738 [INSPIRE].

  89. [89]

    D. Hayden, R. Brock and C. Willis, Z prime: a story, arXiv:1308.5874 [INSPIRE].

  90. [90]

    S. Godfrey and T. Martin, Zdiscovery reach at future hadron colliders: a Snowmass white paper, arXiv:1309.1688 [INSPIRE].

  91. [91]

    A. Katz, M. Son and B. Tweedie, Jet substructure and the search for neutral spin-one resonances in electroweak boson channels, JHEP 03 (2011) 011 [arXiv:1010.5253] [INSPIRE].

    Article  ADS  Google Scholar 

  92. [92]

    A. Katz, M. Son and B. Tweedie, Ditau-jet tagging and boosted higgses from a multi-TeV resonance, Phys. Rev. D 83 (2011) 114033 [arXiv:1011.4523] [INSPIRE].

    ADS  Google Scholar 

  93. [93]

    M. Son, C. Spethmann and B. Tweedie, Diboson-jets and the search for resonant Zh production, JHEP 08 (2012) 160 [arXiv:1204.0525] [INSPIRE].

    Article  ADS  Google Scholar 

  94. [94]

    D. Choudhury, R.M. Godbole and P. Saha, Dijet resonances, widths and all that, JHEP 01 (2012) 155 [arXiv:1111.1054] [INSPIRE].

    Article  ADS  Google Scholar 

  95. [95]

    ATLAS collaboration, Search for high-mass dilepton resonances in 20 fb−1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS experiment, ATLAS-CONF-2013-017, CERN, Geneva Switzerland (2013).

  96. [96]

    ATLAS collaboration, Search for new phenomena in the dijet mass distribution updated using 13.0 fb−1 of pp collisions at \( \sqrt{s} \) = 8 TeV collected by the ATLAS detector, ATLAS-CONF-2012-148, CERN, Geneva Switzerland (2012).

  97. [97]

    ATLAS collaboration, Search for resonant WZ → 3ℓν production in \( \sqrt{s} \) = 8 TeV pp collisions with 13 fb−1 at ATLAS, ATLAS-CONF-2013-015, CERN, Geneva Switzerland (2013).

  98. [98]

    CMS collaboration, Search for W/technirho in WZ using leptonic final states, CMS-PAS-EXO-12-025, CERN, Geneva Switzerland (2012).

  99. [99]

    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

    Article  ADS  Google Scholar 

  100. [100]

    C. Duhr, N.D. Christensen and B. Fuks, FeynRulesa Mathematica package to calculate Feynman rules webpage, http://feynrules.irmp.ucl.ac.be/.

  101. [101]

    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  102. [102]

    A. Belyaev, N. Christensen and A. Pukhov, CalcHEPa package for calculation of Feynman diagrams and integration over multi-particle phase space webpage, http://theory.sinp.msu.ru/∼pukhov/calchep.html, (2005).

  103. [103]

    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  104. [104]

    High energy physics models database webpage, http://hepmdb.soton.ac.uk/.

  105. [105]

    D. Pappadopulo, A. Thamm, R. Torre and A. Wulzer, Vector triplet (bridge model) webpage, http://hepmdb.soton.ac.uk/hepmdb:0214.0151.

  106. [106]

    R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong double Higgs production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].

    Article  ADS  Google Scholar 

  107. [107]

    Wolfram research, Computable document format webpage, http://www.wolfram.com/cdf/.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Riccardo Torre.

Additional information

ArXiv ePrint: 1402.4431

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pappadopulo, D., Thamm, A., Torre, R. et al. Heavy vector triplets: bridging theory and data. J. High Energ. Phys. 2014, 60 (2014). https://doi.org/10.1007/JHEP09(2014)060

Download citation

Keywords

  • Phenomenological Models