Advertisement

Journal of High Energy Physics

, 2014:53 | Cite as

Large-field inflation and supersymmetry breaking

  • Wilfried Buchmüller
  • Emilian Dudas
  • Lucien Heurtier
  • Clemens WieckEmail author
Open Access
Article

Abstract

Large-field inflation is an interesting and predictive scenario. Its non-trivial embedding in supergravity was intensively studied in the recent literature, whereas its interplay with supersymmetry breaking has been less thoroughly investigated. We consider the minimal viable model of chaotic inflation in supergravity containing a stabilizer field, and add a Polonyi field. Furthermore, we study two possible extensions of the minimal setup. We show that there are various constraints: first of all, it is very hard to couple an O’Raifeartaigh sector with the inflaton sector, the simplest viable option being to couple them only through gravity. Second, even in the simplest model the gravitino mass is bounded from above parametrically by the inflaton mass. Therefore, high-scale supersymmetry breaking is hard to implement in a chaotic inflation setup. As a separate comment we analyze the simplest chaotic inflation construction without a stabilizer field, together with a supersymmetrically stabilized Kähler modulus. Without a modulus, the potential of such a model is unbounded from below. We show that a heavy modulus cannot solve this problem.

Keywords

Cosmology of Theories beyond the SM Supersymmetry Breaking 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.D. Linde, Chaotic Inflation, Phys. Lett. B 129 (1983) 177 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  2. [2]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XXII. Constraints on inflation, arXiv:1303.5082 [INSPIRE].
  3. [3]
    D.H. Lyth, What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy?, Phys. Rev. Lett. 78 (1997) 1861 [hep-ph/9606387] [INSPIRE].CrossRefADSGoogle Scholar
  4. [4]
    BICEP2 collaboration, P.A.R. Ade et al., Detection of B-Mode Polarization at Degree Angular Scales by BICEP2, Phys. Rev. Lett. 112 (2014) 241101 [arXiv:1403.3985] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    M. Kawasaki, M. Yamaguchi and T. Yanagida, Natural chaotic inflation in supergravity, Phys. Rev. Lett. 85 (2000) 3572 [hep-ph/0004243] [INSPIRE].CrossRefADSGoogle Scholar
  6. [6]
    R. Kallosh, A. Linde and T. Rube, General inflaton potentials in supergravity, Phys. Rev. D 83 (2011) 043507 [arXiv:1011.5945] [INSPIRE].ADSGoogle Scholar
  7. [7]
    K. Harigaya, M. Ibe, K. Schmitz and T.T. Yanagida, Dynamical Chaotic Inflation in the Light of BICEP2, Phys. Lett. B 733 (2014) 283 [arXiv:1403.4536] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    K. Harigaya and T.T. Yanagida, Discovery of Large Scale Tensor Mode and Chaotic Inflation in Supergravity, arXiv:1403.4729 [INSPIRE].
  9. [9]
    S. Ferrara, A. Kehagias and A. Riotto, The Imaginary Starobinsky Model, Fortsch. Phys. 62 (2014) 573 [arXiv:1403.5531] [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    J. Ellis, M.A.G. Garcìa, D.V. Nanopoulos and K.A. Olive, Resurrecting Quadratic Inflation in No-Scale Supergravity in Light of BICEP2, JCAP 05 (2014) 037 [arXiv:1403.7518] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    T. Li, Z. Li and D.V. Nanopoulos, Chaotic Inflation in No-Scale Supergravity with String Inspired Moduli Stabilization, arXiv:1405.0197 [INSPIRE].
  12. [12]
    R. Kallosh, A. Linde and A. Westphal, Chaotic Inflation in Supergravity after Planck and BICEP2, Phys. Rev. D 90 (2014) 023534 [arXiv:1405.0270] [INSPIRE].ADSGoogle Scholar
  13. [13]
    S.V. Ketov and T. Terada, Inflation in Supergravity with a Single Chiral Superfield, Phys. Lett. B 736 (2014) 272 [arXiv:1406.0252] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  14. [14]
    L.E. Ibáñez and I. Valenzuela, BICEP2, the Higgs Mass and the SUSY-breaking Scale, arXiv:1403.6081 [INSPIRE].
  15. [15]
    E. Palti and T. Weigand, Towards large r from [p, q]-inflation, JHEP 04 (2014) 155 [arXiv:1403.7507] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    F. Marchesano, G. Shiu and A.M. Uranga, F-term Axion Monodromy Inflation, arXiv:1404.3040 [INSPIRE].
  17. [17]
    A. Hebecker, S.C. Kraus and L.T. Witkowski, D7-Brane Chaotic Inflation, Phys. Lett. B 737 (2014) 16 [arXiv:1404.3711] [INSPIRE].CrossRefGoogle Scholar
  18. [18]
    M. Arends et al., D7-Brane Moduli Space in Axion Monodromy and Fluxbrane Inflation, arXiv:1405.0283 [INSPIRE].
  19. [19]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].MathSciNetADSGoogle Scholar
  20. [20]
    R. Kallosh and A.D. Linde, Landscape, the scale of SUSY breaking and inflation, JHEP 12 (2004) 004 [hep-th/0411011] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  21. [21]
    L. O’Raifeartaigh, Spontaneous Symmetry Breaking for Chiral Scalar Superfields, Nucl. Phys. B 96 (1975) 331 [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  22. [22]
    J. Polonyi, Generalization of the Massive Scalar Multiplet Coupling to the Supergravity, Hungary Central Inst Res - KFKI-77-93 (77,REC.JUL 78).Google Scholar
  23. [23]
    R. Kallosh, A. Linde, K.A. Olive and T. Rube, Chaotic inflation and supersymmetry breaking, Phys. Rev. D 84 (2011) 083519 [arXiv:1106.6025] [INSPIRE].ADSGoogle Scholar
  24. [24]
    K. Nakayama, F. Takahashi and T.T. Yanagida, Gravitino Problem in Supergravity Chaotic Inflation and SUSY Breaking Scale after BICEP2, Phys. Lett. B 734 (2014) 358 [arXiv:1404.2472] [INSPIRE].CrossRefADSGoogle Scholar
  25. [25]
    R. Kallosh and A.D. Linde, OKKLT, JHEP 02 (2007) 002 [hep-th/0611183] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  26. [26]
    L. Álvarez-Gaumé, C. Gomez and R. Jimenez, Minimal Inflation, Phys. Lett. B 690 (2010) 68 [arXiv:1001.0010] [INSPIRE].CrossRefADSGoogle Scholar
  27. [27]
    L. Álvarez-Gaumé, C. Gomez and R. Jimenez, Phenomenology of the minimal inflation scenario: inflationary trajectories and particle production, JCAP 03 (2012) 017 [arXiv:1110.3984] [INSPIRE].CrossRefGoogle Scholar
  28. [28]
    I. Antoniadis, E. Dudas, S. Ferrara and A. Sagnotti, The Volkov-Akulov-Starobinsky supergravity, Phys. Lett. B 733 (2014) 32 [arXiv:1403.3269] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  29. [29]
    S. Ferrara, A. Kehagias and A. Riotto, The Imaginary Starobinsky Model and Higher Curvature Corrections, arXiv:1405.2353 [INSPIRE].
  30. [30]
    S.C. Davis and M. Postma, SUGRA chaotic inflation and moduli stabilisation, JCAP 03 (2008) 015 [arXiv:0801.4696] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    W. Buchmüller, C. Wieck and M.W. Winkler, Supersymmetric Moduli Stabilization and High-Scale Inflation, arXiv:1404.2275 [INSPIRE].
  32. [32]
    A. Linde, Y. Mambrini and K.A. Olive, Supersymmetry Breaking due to Moduli Stabilization in String Theory, Phys. Rev. D 85 (2012) 066005 [arXiv:1111.1465] [INSPIRE].ADSGoogle Scholar
  33. [33]
    E. Dudas, A. Linde, Y. Mambrini, A. Mustafayev and K.A. Olive, Strong moduli stabilization and phenomenology, Eur. Phys. J. C 73 (2013) 2268 [arXiv:1209.0499] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    R. Kallosh, A. Linde, B. Vercnocke and T. Wrase, Analytic Classes of Metastable de Sitter Vacua, arXiv:1406.4866 [INSPIRE].

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Wilfried Buchmüller
    • 1
  • Emilian Dudas
    • 1
    • 2
  • Lucien Heurtier
    • 1
    • 2
  • Clemens Wieck
    • 1
    Email author
  1. 1.Deutsches Elektronen-Synchrotron DESYHamburgGermany
  2. 2.CPhT, Ecole PolytechniquePalaiseau CedexFrance

Personalised recommendations