Advertisement

Journal of High Energy Physics

, 2014:43 | Cite as

Non-planar master integrals for the production of two off-shell vector bosons in collisions of massless partons

  • Fabrizio CaolaEmail author
  • Johannes M. Henn
  • Kirill Melnikov
  • Vladimir A. Smirnov
Open Access
Article

Abstract

We present the calculation of all non-planar master integrals that are needed to describe production of two off-shell vector bosons in collisions of two massless partons through NNLO in perturbative QCD. The integrals are computed analytically using differential equations in external kinematic variables and expressed in terms of Goncharov polylogarithms. These results provide the last missing ingredient needed for the computation of two-loop amplitudes that describe the production of two gauge bosons with different invariant masses in hadron collisions.

Keywords

NLO Computations Hadronic Colliders 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Henn, K. Melnikov and V.A. Smirnov, Two-loop planar master integrals for the production of off-shell vector bosons in hadron collisions, JHEP 05 (2014) 090 [arXiv:1402.7078] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    L.J. Dixon, Z. Kunszt and A. Signer, Helicity amplitudes for \( \mathcal{O}\left({\alpha}_s\right) \) production of W + W , W ± Z, ZZ, W ± γ, or Zγ pairs at hadron colliders, Nucl. Phys. B 531 (1998) 3 [hep-ph/9803250] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    L.J. Dixon, Z. Kunszt and A. Signer, Vector boson pair production in hadronic collisions at order α s : lepton correlations and anomalous couplings, Phys. Rev. D 60 (1999) 114037 [hep-ph/9907305] [INSPIRE].ADSGoogle Scholar
  4. [4]
    A. Bierweiler, T. Kasprzik and J.H. Kühn, Vector-boson pair production at the LHC to \( \mathcal{O}\left({\alpha}^3\right) \) accuracy, JHEP 12 (2013) 071 [arXiv:1305.5402] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. Baglio, L.D. Ninh and M.M. Weber, Massive gauge boson pair production at the LHC: a next-to-leading order story, Phys. Rev. D 88 (2013) 113005 [arXiv:1307.4331] [INSPIRE].ADSGoogle Scholar
  6. [6]
    S. Dawson, I.M. Lewis and M. Zeng, Threshold resummed and approximate next-to-next-to-leading order results for W + W pair production at the LHC, Phys. Rev. D 88 (2013) 054028 [arXiv:1307.3249] [INSPIRE].ADSGoogle Scholar
  7. [7]
    F. Cascioli et al., Precise Higgs-background predictions: merging NLO QCD and squared quark-loop corrections to four-lepton + 0, 1 jet production, JHEP 01 (2014) 046 [arXiv:1309.0500] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    P. Nason and G. Zanderighi, W + W , WZ and ZZ production in the POWHEG-BOX-V 2, Eur. Phys. J. C 74 (2014) 2702 [arXiv:1311.1365] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    F. Campanario, M. Rauch and S. Sapeta, W + W production at high transverse momenta beyond NLO, Nucl. Phys. B 879 (2014) 65 [arXiv:1309.7293] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    T. Gehrmann, L. Tancredi and E. Weihs, Two-loop master integrals for \( q\overline{q}\to VV \) : the planar topologies, JHEP 08 (2013) 070 [arXiv:1306.6344] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A.V. Kotikov, Differential equations method: new technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A 110 (1997) 1435 [hep-th/9711188] [INSPIRE].ADSGoogle Scholar
  14. [14]
    A.V. Smirnov, Algorithm FIREFeynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A.V. Smirnov and V.A. Smirnov, FIRE4, LiteRed and accompanying tools to solve integration by parts relations, Comput. Phys. Commun. 184 (2013) 2820 [arXiv:1302.5885] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    V.A. Smirnov, Applied asymptotic expansions in momenta and masses, Springer Tracts Mod. Phys. 177 (2002) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    V.A. Smirnov, Analytic tools for Feynman integrals, Springer Tracts Mod. Phys. 250 (2012) 1 [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    A. Pak and A. Smirnov, Geometric approach to asymptotic expansion of Feynman integrals, Eur. Phys. J. C 71 (2011) 1626 [arXiv:1011.4863] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    B. Jantzen, A.V. Smirnov and V.A. Smirnov, Expansion by regions: revealing potential and Glauber regions automatically, Eur. Phys. J. C 72 (2012) 2139 [arXiv:1206.0546] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A.V. Smirnov, FIESTA 3: cluster-parallelizable multiloop numerical calculations in physical regions, Comput. Phys. Commun. 185 (2014) 2090 [arXiv:1312.3186] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    J.M. Henn, A.V. Smirnov and V.A. Smirnov, Analytic results for planar three-loop four-point integrals from a Knizhnik-Zamolodchikov equation, JHEP 07 (2013) 128 [arXiv:1306.2799] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    J.M. Henn, A.V. Smirnov and V.A. Smirnov, Evaluating single-scale and/or non-planar diagrams by differential equations, JHEP 03 (2014) 088 [arXiv:1312.2588] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Argeri et al., Magnus and Dyson series for master integrals, JHEP 03 (2014) 082 [arXiv:1401.2979] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    T. Gehrmann, A. von Manteuffel, L. Tancredi and E. Weihs, The two-loop master integrals for \( q\overline{q}\to VV \), JHEP 06 (2014) 032 [arXiv:1404.4853] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    C.W. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC framework for symbolic computation within the C++ programming language, J. Symbol. Comput. 33 (2002) 1 [cs/0004015].CrossRefzbMATHMathSciNetGoogle Scholar
  27. [27]
    J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167 (2005) 177 [hep-ph/0410259] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  28. [28]
    K.-T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977) 831 [INSPIRE].CrossRefzbMATHMathSciNetGoogle Scholar
  29. [29]
    S. Caron-Huot and J.M. Henn, Iterative structure of finite loop integrals, JHEP 06 (2014) 114 [arXiv:1404.2922] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic functions, JHEP 10 (2012) 075 [arXiv:1110.0458] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Fabrizio Caola
    • 1
    Email author
  • Johannes M. Henn
    • 2
  • Kirill Melnikov
    • 1
  • Vladimir A. Smirnov
    • 3
  1. 1.Department of Physics and AstronomyJohns Hopkins UniversityBaltimoreU.S.A.
  2. 2.Institute for Advanced StudyPrincetonU.S.A.
  3. 3.Skobeltsyn Institute of Nuclear Physics of Moscow State UniversityMoscowRussia

Personalised recommendations