Advertisement

Journal of High Energy Physics

, 2014:39 | Cite as

Monopole-vortex complex at large distances and nonAbelian duality

  • Chandrasekhar Chatterjee
  • Kenichi Konishi
Open Access
Article

Abstract

We discuss the large-distance approximation of the monopole-vortex complex soliton in a hierarchically broken gauge system, SU(N + 1) → SU(N ) × U(1) → 1, in a color-flavor locked SU(N ) symmetric vacuum. The (’t Hooft-Polyakov) monopole of the higher-mass-scale breaking appears as a point and acts as a source of the thin vortex generated by the lower-energy gauge symmetry breaking. The exact color-flavor diagonal symmetry of the bulk system is broken by each individual soliton, leading to nonAbelian orientational CP N −1 zeromodes propagating in the vortex worldsheet, well studied in the literature. But since the vortex ends at the monopoles these fluctuating modes endow the monopoles with a local SU(N ) charge. This phenomenon is studied by performing the duality transformation in the presence of the CP N −1 moduli space. The effective action is a CP N−1 model defined on afinite-width worldstrip.

Keywords

Duality in Gauge Field Theories Solitons Monopoles and Instantons Confinement Gauge Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].
  2. [2]
    N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    P.C. Argyres and A.E. Faraggi, The vacuum structure and spectrum of N = 2 supersymmetric SU(N ) gauge theory, Phys. Rev. Lett. 74 (1995) 3931 [hep-th/9411057] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A. Klemm, W. Lerche, S. Yankielowicz and S. Theisen, Simple singularities and N = 2 supersymmetric Yang-Mills theory, Phys. Lett. B 344 (1995) 169 [hep-th/9411048] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    A. Klemm, W. Lerche and S. Theisen, Nonperturbative effective actions of N = 2 supersymmetric gauge theories, Int. J. Mod. Phys. A 11 (1996) 1929 [hep-th/9505150] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    A. Hanany and Y. Oz, On the quantum moduli space of vacua of N = 2 supersymmetric SU(N c) gauge theories, Nucl. Phys. B 452 (1995) 283 [hep-th/9505075] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    P.C. Argyres, M.R. Plesser and A.D. Shapere, The Coulomb phase of N = 2 supersymmetric QCD, Phys. Rev. Lett. 75 (1995) 1699 [hep-th/9505100] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  8. [8]
    P.C. Argyres and A.D. Shapere, The vacuum structure of N = 2 superQCD with classical gauge groups, Nucl. Phys. B 461 (1996) 437 [hep-th/9509175] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    A. Hanany, On the quantum moduli space of vacua N = 2 supersymmetric gauge theories, Nucl. Phys. B 466 (1996) 85 [hep-th/9509176] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    K. Konishi and H. Terao, CP, charge fractionalizations and low-energy effective actions in the SU(2) Seiberg-Witten theories with quarks, Nucl. Phys. B 511 (1998) 264 [hep-th/9707005] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    A. Rebhan, P. van Nieuwenhuizen and R. Wimmer, Nonvanishing quantum corrections to the mass and central charge of the N = 2 vortex and BPS saturation, Nucl. Phys. B 679 (2004) 382 [hep-th/0307282] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Rebhan, R. Schöfbeck, P. van Nieuwenhuizen and R. Wimmer, BPS saturation of the N =4 monopole by infinite composite-operator renormalization, Phys. Lett. B 632 (2006) 145 [hep-th/0502221] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Rebhan, P. van Nieuwenhuizen and R. Wimmer, Quantum mass and central charge of supersymmetric monopoles: Anomalies, current renormalization and surface terms, JHEP 06 (2006) 056 [hep-th/0601029] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    P.C. Argyres, M.R. Plesser and N. Seiberg, The moduli space of vacua of N = 2 SUSY QCD and duality in N = 1 SUSY QCD, Nucl. Phys. B 471 (1996) 159 [hep-th/9603042] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    P.C. Argyres, M.R. Plesser and A.D. Shapere, N = 2 moduli spaces and N = 1 dualities for SO(n c) and USp(2n c) superQCD, Nucl. Phys. B 483 (1997) 172 [hep-th/9608129] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    K. Hori, H. Ooguri and Y. Oz, Strong coupling dynamics of four-dimensional N = 1 gauge theories from M-theory five-brane, Adv. Theor. Math. Phys. 1 (1998) 1 [hep-th/9706082] [INSPIRE].MathSciNetGoogle Scholar
  17. [17]
    G. Carlino, K. Konishi and H. Murayama, Dynamical symmetry breaking in supersymmetric SU(n c) and USp(2n c) gauge theories, Nucl. Phys. B 590 (2000) 37 [hep-th/0005076] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    P.C. Argyres, M.R. Plesser, N. Seiberg and E. Witten, New N = 2 superconformal field theories in four-dimensions, Nucl. Phys. B 461 (1996) 71 [hep-th/9511154] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    L. Di Pietro and S. Giacomelli, Confining vacua in SQCD, the Konishi anomaly and the Dijkgraaf-Vafa superpotential, JHEP 02 (2012) 087 [arXiv:1108.6049] [INSPIRE].CrossRefGoogle Scholar
  21. [21]
    T. Eguchi, K. Hori, K. Ito and S.-K. Yang, Study of N = 2 superconformal field theories in four-dimensions, Nucl. Phys. B 471 (1996) 430 [hep-th/9603002] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    G. Carlino, K. Konishi, S.P. Kumar and H. Murayama, Vacuum structure and flavor symmetry breaking in supersymmetric SO(n c) gauge theories, Nucl. Phys. B 608 (2001) 51 [hep-th/0104064] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    S. Giacomelli and K. Konishi, New Confinement Phases from Singular SCFT, JHEP 03 (2013) 009 [arXiv:1301.0420] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    P.C. Argyres and N. Seiberg, S-duality in N = 2 supersymmetric gauge theories, JHEP 12 (2007) 088 [arXiv:0711.0054] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    D. Gaiotto, N. Seiberg and Y. Tachikawa, Comments on scaling limits of 4d N = 2 theories, JHEP 01 (2011) 078 [arXiv:1011.4568] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    S. Giacomelli, Singular points in N = 2 SQCD, JHEP 09 (2012) 040 [arXiv:1207.4037] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    A. Abouelsaood, Are there chromodyons?, Nucl. Phys. B 226 (1983) 309 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    P.C. Nelson and A. Manohar, Global color is not always defined, Phys. Rev. Lett. 50 (1983) 943 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    A.P. Balachandran et al., Monopole topology and the problem of color, Phys. Rev. Lett. 50 (1983) 1553 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    W. Wetzel, Electroweak Radiative Corrections for e + e μ + μ at LEP Energies, Nucl. Phys. B 227 (1983) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    E.J. Weinberg, Fundamental Monopoles and Multi-Monopole Solutions for Arbitrary Simple Gauge Groups, Nucl. Phys. B 167 (1980) 500 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    E.J. Weinberg, Fundamental Monopoles in Theories With Arbitrary Symmetry Breaking, Nucl. Phys. B 203 (1982) 445 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    K.-M. Lee, E.J. Weinberg and P. Yi, Massive and massless monopoles with nonAbelian magnetic charges, Phys. Rev. D 54 (1996) 6351 [hep-th/9605229] [INSPIRE].ADSMathSciNetGoogle Scholar
  34. [34]
    N. Dorey, C. Fraser, T.J. Hollowood and M.A.C. Kneipp, NonAbelian duality in N = 4 supersymmetric gauge theories, hep-th/9512116 [INSPIRE].
  35. [35]
    R. Auzzi, S. Bolognesi, J. Evslin, K. Konishi and A. Yung, NonAbelian superconductors: Vortices and confinement in N = 2 SQCD, Nucl. Phys. B 673 (2003) 187 [hep-th/0307287] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    R. Auzzi, S. Bolognesi, J. Evslin and K. Konishi, NonAbelian monopoles and the vortices that confine them, Nucl. Phys. B 686 (2004) 119 [hep-th/0312233] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    M.A.C. Kneipp, Color superconductivity, Z N flux tubes and monopole confinement in deformed N = 2 super Yang-Mills theories, Phys. Rev. D 69 (2004) 045007 [hep-th/0308086] [INSPIRE].ADSGoogle Scholar
  38. [38]
    M. Eto et al., Non-Abelian duality from vortex moduli: A Dual model of color-confinement, Nucl. Phys. B 780 (2007) 161 [hep-th/0611313] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    M. Cipriani, D. Dorigoni, S.B. Gudnason, K. Konishi and A. Michelini, Non-Abelian monopole-vortex complex, Phys. Rev. D 84 (2011) 045024 [arXiv:1106.4214] [INSPIRE].ADSGoogle Scholar
  40. [40]
    K. Konishi, The Magnetic Monopoles Seventy-Five Years Later, Lect. Notes Phys. 737 (2008) 471 [hep-th/0702102] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  41. [41]
    L. Ferretti, S.B. Gudnason and K. Konishi, Non-Abelian vortices and monopoles in SO(N ) theories, Nucl. Phys. B 789 (2008) 84 [arXiv:0706.3854] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  42. [42]
    S.B. Gudnason and K. Konishi, Low-energy U(1) × USp(2M ) gauge theory from simple high-energy gauge group, Phys. Rev. D 81 (2010) 105007 [arXiv:1002.0850] [INSPIRE].ADSGoogle Scholar
  43. [43]
    S.B. Gudnason, Y. Jiang and K. Konishi, Non-Abelian vortex dynamics: Effective world-sheet action, JHEP 08 (2010) 012 [arXiv:1007.2116] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  44. [44]
    A. Hanany and D. Tong, Vortices, instantons and branes, JHEP 07 (2003) 037 [hep-th/0306150] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  45. [45]
    J. Evslin, S. Giacomelli, K. Konishi and A. Michelini, Nonabelian Faddeev-Niemi Decomposition of the SU(3) Yang-Mills Theory, JHEP 06 (2011) 094 [arXiv:1103.5969] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  46. [46]
    Y.M. Cho, A Restricted Gauge Theory, Phys. Rev. D 21 (1980) 1080 [INSPIRE].ADSGoogle Scholar
  47. [47]
    K. Seo, M. Okawa and A. Sugamoto, Dual Transformation in Nonabelian Gauge Theories, Phys. Rev. D 19 (1979) 3744 [INSPIRE].ADSMathSciNetGoogle Scholar
  48. [48]
    Y. Hirono, T. Kanazawa and M. Nitta, Topological Interactions of Non-Abelian Vortices with Quasi-Particles in High Density QCD, Phys. Rev. D 83 (2011) 085018 [arXiv:1012.6042] [INSPIRE].ADSGoogle Scholar
  49. [49]
    C. Chatterjee and A. Lahiri, Flux dualization in broken SU(2), JHEP 02 (2010) 033 [arXiv:0912.2168] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    K. Konishi, A. Michelini and K. Ohashi, Monopole-vortex complex in a theta vacuum, Phys. Rev. D 82 (2010) 125028 [arXiv:1009.2042] [INSPIRE].ADSGoogle Scholar
  51. [51]
    M. Cipriani and T. Fujimori, Effective Action of Non-Abelian Monopole-Vortex Complex, arXiv:1207.2070 [INSPIRE].
  52. [52]
    F. Delduc and G. Valent, Classical and Quantum Structure of the Compact Kählerian σ Models, Nucl. Phys. B 253 (1985) 494 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  53. [53]
    F. Delduc and G. Valent, Renormalizability of the generalized σ-models defined on compact Hermitian symmetric spaces, Phys. Lett. B 148 (1984) 124 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  54. [54]
    K.-M. Lee, The dual formulation of cosmic strings and vortices, Phys. Rev. D 48 (1993) 2493 [hep-th/9301102] [INSPIRE].ADSGoogle Scholar
  55. [55]
    K. Ohashi, unpublished.Google Scholar
  56. [56]
    R. Auzzi, M. Eto and W. Vinci, Type I non-Abelian superconductors in supersymmetric gauge theories, JHEP 11 (2007) 090 [arXiv:0709.1910] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  57. [57]
    Y. Nambu, Strings, Monopoles and Gauge Fields, Phys. Rev. D 10 (1974) 4262 [INSPIRE].ADSGoogle Scholar
  58. [58]
    E.T. Akhmedov, M.N. Chernodub, M.I. Polikarpov and M.A. Zubkov, Quantum theory of strings in Abelian Higgs model, Phys. Rev. D 53 (1996) 2087 [hep-th/9505070] [INSPIRE].ADSMathSciNetGoogle Scholar
  59. [59]
    A. Milekhin, CP(N-1) model on finite interval in the large N limit, Phys. Rev. D 86 (2012) 105002 [arXiv:1207.0417] [INSPIRE].ADSGoogle Scholar
  60. [60]
    R. Jackiw and C. Rebbi, Solitons with Fermion Number 1/2, Phys. Rev. D 13 (1976) 3398 [INSPIRE].ADSMathSciNetGoogle Scholar
  61. [61]
    D. Dorigoni, K. Konishi and K. Ohashi, Non-Abelian vortices with product moduli, Phys. Rev. D 79 (2009) 045011 [arXiv:0801.3284] [INSPIRE].ADSGoogle Scholar
  62. [62]
    N.S. Manton, Monopole Interactions at Long Range, Phys. Lett. B 154 (1985) 397 [Erratum ibid. 157B (1985) 475] [INSPIRE].
  63. [63]
    E. Witten, Instantons, the Quark Model and the 1/n Expansion, Nucl. Phys. B 149 (1979) 285 [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Two-Dimensional σ-models: Modeling Nonperturbative Effects of Quantum Chromodynamics, Phys. Rept. 116 (1984) 103 [Sov. J. Part. Nucl. 17 (1986) 204] [Fiz. Elem. Chast. Atom. Yadra 17 (1986) 472] [INSPIRE].
  65. [65]
    M. Shifman and A. Yung, NonAbelian string junctions as confined monopoles, Phys. Rev. D 70 (2004) 045004 [hep-th/0403149] [INSPIRE].ADSMathSciNetGoogle Scholar
  66. [66]
    A. Hanany and D. Tong, Vortex strings and four-dimensional gauge dynamics, JHEP 04 (2004) 066 [hep-th/0403158] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  67. [67]
    A. Gorsky, M. Shifman and A. Yung, Non-Abelian Meissner effect in Yang-Mills theories at weak coupling, Phys. Rev. D 71 (2005) 045010 [hep-th/0412082] [INSPIRE].ADSGoogle Scholar
  68. [68]
    M. Nitta and W. Vinci, Non-Abelian Monopoles in the Higgs Phase, Nucl. Phys. B 848 (2011) 121 [arXiv:1012.4057] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  69. [69]
    M. Eto et al., Vortices and Monopoles in Mass-deformed SO and USp Gauge Theories, JHEP 12 (2011) 017 [arXiv:1108.6124] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  70. [70]
    S. Monin and M. Shifman, Degeneracy between Abelian and Non-Abelian Strings, Int. J. Mod. Phys. A 29 (2014) 1450105 [arXiv:1309.4527] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  71. [71]
    N. Dorey, The BPS spectra of two-dimensional supersymmetric gauge theories with twisted mass terms, JHEP 11 (1998) 005 [hep-th/9806056] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.INFN, Sezione di PisaPisaItaly
  2. 2.Department of Physics “E. Fermi”University of PisaPisaItaly

Personalised recommendations