Journal of High Energy Physics

, 2014:33 | Cite as

Classification of lepton mixing matrices from finite residual symmetries

  • Renato M. Fonseca
  • Walter Grimus
Open Access


Assuming that neutrinos are Majorana particles, we perform a complete classification of all possible mixing matrices which are fully determined by residual symmetries in the charged-lepton and neutrino mass matrices. The classification is based on the assumption that the residual symmetries originate from a finite flavour symmetry group. The mathematical tools which allow us to accomplish this classification are theorems on sums of roots of unity. We find 17 sporadic cases plus one infinite series of mixing matrices associated with three-flavour mixing, all of which have already been discussed in the literature. Only the infinite series contains mixing matrices which are compatible with the data at the 3 sigma level.


Global Symmetries Beyond Standard Model Neutrino Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    P. Ramond, Group theory: a physicists survey, Cambridge University Press, Cambridge U.K. (2010).CrossRefGoogle Scholar
  2. [2]
    G. Altarelli and F. Feruglio, Discrete flavor symmetries and models of neutrino mixing, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    H. Ishimori et al., Non-Abelian Discrete Symmetries in Particle Physics, Prog. Theor. Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    S.F. King and C. Luhn, Neutrino mass and mixing with discrete symmetry, Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    W. Grimus and P.O. Ludl, Finite flavour groups of fermions, J. Phys. A 45 (2012) 233001 [arXiv:1110.6376] [INSPIRE].ADSGoogle Scholar
  6. [6]
    C.S. Lam, Determining horizontal symmetry from neutrino mixing, Phys. Rev. Lett. 101 (2008) 121602 [arXiv:0804.2622] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    C.S. Lam, The unique horizontal symmetry of leptons, Phys. Rev. D 78 (2008) 073015 [arXiv:0809.1185] [INSPIRE].ADSGoogle Scholar
  8. [8]
    W. Grimus, L. Lavoura and P.O. Ludl, Is S 4 the horizontal symmetry of tri-bimaximal lepton mixing?, J. Phys. G 36 (2009) 115007 [arXiv:0906.2689] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    C.S. Lam, A bottom-up analysis of horizontal symmetry, arXiv:0907.2206 [INSPIRE].
  10. [10]
    S.-F. Ge, D.A. Dicus and W.W. Repko, Z 2 Symmetry Prediction for the Leptonic Dirac CP Phase, Phys. Lett. B 702 (2011) 220 [arXiv:1104.0602] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    H.-J. He and F.-R. Yin, Common origin of μ − τ and CP breaking in neutrino seesaw, baryon asymmetry and hidden flavor symmetry, Phys. Rev. D 84 (2011) 033009 [arXiv:1104.2654] [INSPIRE].ADSGoogle Scholar
  12. [12]
    S.-F. Ge, D.A. Dicus and W.W. Repko, Residual symmetries for neutrino mixing with a large θ 13 and nearly maximal δ D, Phys. Rev. Lett. 108 (2012) 041801 [arXiv:1108.0964] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    H.-J. He and X.-J. Xu, Octahedral symmetry with geometrical breaking: new prediction for neutrino mixing angle θ 13 and CP-violation, Phys. Rev. D 86 (2012) 111301 [arXiv:1203.2908] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    D. Hernandez and A.Y. Smirnov, Lepton mixing and discrete symmetries, Phys. Rev. D 86 (2012) 053014 [arXiv:1204.0445] [INSPIRE].ADSGoogle Scholar
  15. [15]
    C.S. Lam, Finite symmetry of leptonic mass matrices, Phys. Rev. D 87 (2013) 013001 [arXiv:1208.5527] [INSPIRE].ADSGoogle Scholar
  16. [16]
    D. Hernandez and A.Y. Smirnov, Discrete symmetries and model-independent patterns of lepton mixing, Phys. Rev. D 87 (2013) 053005 [arXiv:1212.2149] [INSPIRE].ADSGoogle Scholar
  17. [17]
    B. Hu, Neutrino mixing and discrete symmetries, Phys. Rev. D 87 (2013) 033002 [arXiv:1212.2819] [INSPIRE].ADSGoogle Scholar
  18. [18]
    D. Hernandez and A.Y. Smirnov, Relating neutrino masses and mixings by discrete symmetries, Phys. Rev. D 88 (2013) 093007 [arXiv:1304.7738] [INSPIRE].ADSGoogle Scholar
  19. [19]
    R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Discrete Flavour Symmetries in Light of T2K, Phys. Lett. B 703 (2011) 447 [arXiv:1107.3486] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Finite modular groups and lepton mixing, Nucl. Phys. B 858 (2012) 437 [arXiv:1112.1340] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Holthausen, K.S. Lim and M. Lindner, Lepton mixing patterns from a scan of finite discrete groups, Phys. Lett. B 721 (2013) 61 [arXiv:1212.2411] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    C. Hagedorn, A. Meroni and L. Vitale, Mixing patterns from the groups Σ(), J. Phys. A 47 (2014) 055201 [arXiv:1307.5308] [INSPIRE].ADSMathSciNetGoogle Scholar
  23. [23]
    S.F. King, T. Neder and A.J. Stuart, Lepton mixing predictions from Δ(6n 2) family symmetry, Phys. Lett. B 726 (2013) 312 [arXiv:1305.3200] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    L. Lavoura and P.O. Ludl, Residual2 × ℤ2 symmetries and lepton mixing, Phys. Lett. B 731 (2014) 331 [arXiv:1401.5036] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    M. Holthausen and K.S. Lim, Quark and leptonic mixing patterns from the breakdown of a common discrete flavor symmetry, Phys. Rev. D 88 (2013) 033018 [arXiv:1306.4356] [INSPIRE].ADSGoogle Scholar
  26. [26]
    T. Araki, H. Ishida, H. Ishimori, T. Kobayashi and A. Ogasahara, CKM matrix and flavor symmetries, Phys. Rev. D 88 (2013) 096002 [arXiv:1309.4217] [INSPIRE].ADSGoogle Scholar
  27. [27]
    H. Ishimori and S.F. King, A model of quarks with Δ(6N 2) family symmetry, arXiv:1403.4395 [INSPIRE].
  28. [28]
    C.S. Lam, A built-in Horizontal Symmetry of SO(10), arXiv:1403.7835 [INSPIRE].
  29. [29]
    W. Grimus, Discrete symmetries, roots of unity and lepton mixing, J. Phys. G 40 (2013) 075008 [arXiv:1301.0495] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J.H. Conway and A.J. Jones, Trigonometric diophantine equations (On vanishing sums of roots of unity), Acta Arithmetica 30 (1976) 229.zbMATHMathSciNetGoogle Scholar
  31. [31]
    L.C. Washington, Introduction to cyclotomic fields, Springer, New York U.S.A. (1982).CrossRefzbMATHGoogle Scholar
  32. [32]
    D. Speyer, Sums over roots of unity, Mathematics Stack Exchange, (version 2011-05-18).
  33. [33]
    G.C. Branco and L. Lavoura, Rephasing invariant parametrization of the quark mixing matrix, Phys. Lett. B 208 (1988) 123 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    C. Jarlskog, Commutator of the quark mass matrices in the standard electroweak model and a measure of maximal CP-violation, Phys. Rev. Lett. 55 (1985) 1039 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    Groups, Algorithms, ProgrammingA System for Computational Discrete Algebra, (GAP),
  36. [36]
    H.U. Besche, B. Eick and E.A. O’Brien, SmallGroupsA GAP package, (2002).
  37. [37]
    W. Grimus and L. Lavoura, Double seesaw mechanism and lepton mixing, JHEP 03 (2014) 004 [arXiv:1309.3186] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    W. Grimus, A.S. Joshipura, L. Lavoura and M. Tanimoto, Symmetry realization of texture zeros, Eur. Phys. J. C 36 (2004) 227 [hep-ph/0405016] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A.S. Joshipura and K.M. Patel, Horizontal symmetries of leptons with a massless neutrino, Phys. Lett. B 727 (2013) 480 [arXiv:1306.1890] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    D.V. Forero, M. Tórtola and J.W.F. Valle, Global status of neutrino oscillation parameters after Neutrino-2012, Phys. Rev. D 86 (2012) 073012 [arXiv:1205.4018] [INSPIRE].ADSGoogle Scholar
  41. [41]
    G.L. Fogli et al., Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].ADSGoogle Scholar
  42. [42]
    M.C. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    D.V. Forero, M. Tórtola and J.W.F. Valle, Neutrino oscillations refitted, arXiv:1405.7540 [INSPIRE].
  44. [44]
    W. Grimus and P.O. Ludl, On the characterization of the SU(3)-subgroups of type C and D, J. Phys. A 47 (2014) 075202 [arXiv:1310.3746] [INSPIRE].ADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.AHEP Group, Instituto de Física CorpuscularC.S.I.C./Universitat de València, Edificio de Institutos de PaternaValènciaSpain
  2. 2.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations