Advertisement

Journal of High Energy Physics

, 2014:27 | Cite as

Static BPS black holes in U(1) gauged supergravity

  • Stefanos KatmadasEmail author
Open Access
Article

Abstract

We consider the flow equations for 1/4-BPS asymptotically AdS4 static black holes in Fayet-Iliopoulos gauged supergravity, using very special geometry identities to obtain a simplified form in the most general case. Under mild assumptions on the form of the solution, we analyse the flow equations and find an explicit solution for arbitrary gauging and charge vectors. Comparing with the corresponding attractor equations, we find that the solution is given in terms of exactly the same vector of parameters, implying that all regular attractors can be extended to full black hole solutions. We present explicit examples of black hole solutions with all complex scalars and allowed charges turned on, within the STU model and its truncations.

Keywords

Black Holes in String Theory Supergravity Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    K. Behrndt, D. Lüst and W.A. Sabra, Stationary solutions of N = 2 supergravity, Nucl. Phys. B 510 (1998) 264 [hep-th/9705169] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    F. Denef, Supergravity flows and D-brane stability, JHEP 08 (2000) 050 [hep-th/0005049] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    J.P. Gauntlett, J.B. Gutowski, C.M. Hull, S. Pakis and H.S. Reall, All supersymmetric solutions of minimal supergravity in five- dimensions, Class. Quant. Grav. 20 (2003) 4587 [hep-th/0209114] [INSPIRE].ADSzbMATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    J.P. Gauntlett and J.B. Gutowski, General concentric black rings, Phys. Rev. D 71 (2005) 045002 [hep-th/0408122] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    S.L. Cacciatori, D. Klemm, D.S. Mansi and E. Zorzan, All timelike supersymmetric solutions of N = 2, D = 4 gauged supergravity coupled to abelian vector multiplets, JHEP 05 (2008) 097 [arXiv:0804.0009] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    D. Klemm and E. Zorzan, The timelike half-supersymmetric backgrounds of N = 2, D = 4 supergravity with Fayet-Iliopoulos gauging, Phys. Rev. D 82 (2010) 045012 [arXiv:1003.2974] [INSPIRE].ADSGoogle Scholar
  7. [7]
    P. Meessen and T. Ortín, Supersymmetric solutions to gauged N = 2 D = 4 SUGRA: the full timelike shebang, Nucl. Phys. B 863 (2012) 65 [arXiv:1204.0493] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S.L. Cacciatori and D. Klemm, Supersymmetric AdS 4 black holes and attractors, JHEP 01 (2010) 085 [arXiv:0911.4926] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    G. Dall’Agata and A. Gnecchi, Flow equations and attractors for black holes in N = 2 U(1) gauged supergravity, JHEP 03 (2011) 037 [arXiv:1012.3756] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    K. Hristov and S. Vandoren, Static supersymmetric black holes in AdS 4 with spherical symmetry, JHEP 04 (2011) 047 [arXiv:1012.4314] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    D. Klemm, Rotating BPS black holes in matter-coupled AdS 4 supergravity, JHEP 07 (2011) 019 [arXiv:1103.4699] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    S. Barisch, G. Lopes Cardoso, M. Haack, S. Nampuri and N.A. Obers, Nernst branes in gauged supergravity, JHEP 11 (2011) 090 [arXiv:1108.0296] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    M. Colleoni and D. Klemm, Nut-charged black holes in matter-coupled N = 2, D = 4 gauged supergravity, Phys. Rev. D 85 (2012) 126003 [arXiv:1203.6179] [INSPIRE].ADSGoogle Scholar
  14. [14]
    N. Halmagyi, M. Petrini and A. Zaffaroni, BPS black holes in AdS 4 from M-theory, JHEP 08 (2013) 124 [arXiv:1305.0730] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    N. Halmagyi, BPS Black Hole Horizons in N = 2 Gauged Supergravity, JHEP 02 (2014) 051 [arXiv:1308.1439] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Barisch-Dick, G.L. Cardoso, M. Haack and Á. Véliz-Osorio, Quantum corrections to extremal black brane solutions, JHEP 02 (2014) 105 [arXiv:1311.3136] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Gnecchi and N. Halmagyi, Supersymmetric black holes in AdS 4 from very special geometry, JHEP 04 (2014) 173 [arXiv:1312.2766] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    N. Halmagyi and T. Vanel, AdS Black Holes from Duality in Gauged Supergravity, JHEP 04 (2014) 130 [arXiv:1312.5430] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. Bellucci, S. Ferrara, A. Marrani and A. Yeranyan, D = 4 Black Hole Attractors in N = 2 Supergravity with Fayet-Iliopoulos Terms, Phys. Rev. D 77 (2008) 085027 [arXiv:0802.0141] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    K. Hristov, S. Katmadas and V. Pozzoli, Ungauging black holes and hidden supercharges, JHEP 01 (2013) 110 [arXiv:1211.0035] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    D.D.K. Chow and G. G. Compère, Dyonic AdS black holes in maximal gauged supergravity, Phys. Rev. D 89 (2014) 065003 [arXiv:1311.1204] [INSPIRE].ADSGoogle Scholar
  22. [22]
    A. Gnecchi, K. Hristov, D. Klemm, C. Toldo and O. Vaughan, Rotating black holes in 4d gauged supergravity, JHEP 01 (2014) 127 [arXiv:1311.1795] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  23. [23]
    M. Cvetič, M.J. Duff, P. Hoxha, J.T. Liu, H. Lü et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S. Ferrara, A. Marrani, E. Orazi, R. Stora and A. Yeranyan, Two-Center Black Holes Duality-Invariants for STU Model and its lower-rank Descendants, J. Math. Phys. 52 (2011) 062302 [arXiv:1011.5864] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    L. Andrianopoli, R. D’Auria, S. Ferrara, A. Marrani and M. Trigiante, Two-Centered Magical Charge Orbits, JHEP 04 (2011) 041 [arXiv:1101.3496] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Ceresole, S. Ferrara, A. Marrani and A. Yeranyan, Small Black Hole Constituents and Horizontal Symmetry, JHEP 06 (2011) 078 [arXiv:1104.4652] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    G. Bossard and S. Katmadas, Duality covariant multi-centre black hole systems, JHEP 08 (2013) 007 [arXiv:1304.6582] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    D. Klemm and O. Vaughan, Nonextremal black holes in gauged supergravity and the real formulation of special geometry, JHEP 01 (2013) 053 [arXiv:1207.2679] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    C. Toldo and S. Vandoren, Static nonextremal AdS4 black hole solutions, JHEP 09 (2012) 048 [arXiv:1207.3014] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    D. Klemm and O. Vaughan, Nonextremal black holes in gauged supergravity and the real formulation of special geometry II, Class. Quant. Grav. 30 (2013) 065003 [arXiv:1211.1618] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    A. Gnecchi and C. Toldo, On the non-BPS first order flow in N = 2 U(1)-gauged Supergravity, JHEP 03 (2013) 088 [arXiv:1211.1966] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    G. Bossard and S. Katmadas, Duality covariant non-BPS first order systems, JHEP 09 (2012) 100 [arXiv:1205.5461] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    A. Ceresole, R. D’Auria and S. Ferrara, The Symplectic structure of N = 2 supergravity and its central extension, Nucl. Phys. Proc. Suppl. 46 (1996) 67 [hep-th/9509160] [INSPIRE].ADSzbMATHMathSciNetCrossRefGoogle Scholar
  34. [34]
    S. Ferrara and M. Günaydin, Orbits of exceptional groups, duality and BPS states in string theory, Int. J. Mod. Phys. A 13 (1998) 2075 [hep-th/9708025] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S. Ferrara, E.G. Gimon and R. Kallosh, Magic supergravities, N = 8 and black hole composites, Phys. Rev. D 74 (2006) 125018 [hep-th/0606211] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    S. Ferrara, A. Marrani and A. Yeranyan, On Invariant Structures of Black Hole Charges, JHEP 02 (2012) 071 [arXiv:1110.4004] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    B.L. Cerchiai, S. Ferrara, A. Marrani and B. Zumino, Duality, Entropy and ADM Mass in Supergravity, Phys. Rev. D 79 (2009) 125010 [arXiv:0902.3973] [INSPIRE].ADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità di Milano-BicoccaMilanoItaly
  2. 2.INFN, sezione di Milano-BicoccaMilanoItaly

Personalised recommendations