Skip to main content

Conformal blocks for highly disparate scaling dimensions

A preprint version of the article is available at arXiv.

Abstract

We show that conformal blocks simplify greatly when there is a large difference between two of the scaling dimensions for external operators. In particular the spacetime dimension only appears in an overall constant which we determine via recurrence relations. Connections to the conformal bootstrap program and the AdS / CFT correspondence are also discussed.

References

  1. [1]

    A.M. Polyakov, Non-Hamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz. 66 (1974) 23 [Sov. Phys. JETP 39 (1974) 10] [INSPIRE].

  2. [2]

    R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  3. [3]

    V.S. Rychkov and A. Vichi, Universal constraints on conformal operator dimensions, Phys. Rev. D 80 (2009) 045006 [arXiv:0905.2211] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  4. [4]

    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  5. [5]

    F. Caracciolo and V.S. Rychkov, Rigorous limits on the interaction strength in quantum field theory, Phys. Rev. D 81 (2010) 085037 [arXiv:0912.2726] [INSPIRE].

    ADS  Google Scholar 

  6. [6]

    D. Poland and D. Simmons-Duffin, Bounds on 4D conformal and superconformal field theories, JHEP 05 (2011) 017 [arXiv:1009.2087] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  7. [7]

    R. Rattazzi, S. Rychkov and A. Vichi, Central charge bounds in 4D conformal field theory, Phys. Rev. D 83 (2011) 046011 [arXiv:1009.2725] [INSPIRE].

    ADS  Google Scholar 

  8. [8]

    R. Rattazzi, S. Rychkov and A. Vichi, Bounds in 4D conformal field theories with global symmetry, J. Phys. A 44 (2011) 035402 [arXiv:1009.5985] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  9. [9]

    A. Vichi, Improved bounds for CFTs with global symmetries, JHEP 01 (2012) 162 [arXiv:1106.4037] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    D. Poland, D. Simmons-Duffin and A. Vichi, Carving out the space of 4D CFTs, JHEP 05 (2012) 110 [arXiv:1109.5176] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    S. El-Showk et al., Solving the 3D Ising model with the conformal bootstrap, Phys. Rev. D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].

    ADS  Google Scholar 

  12. [12]

    P. Liendo, L. Rastelli and B.C. van Rees, The bootstrap program for boundary CFT d , JHEP 07 (2013) 113 [arXiv:1210.4258] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    S. El-Showk and M.F. Paulos, Bootstrapping conformal field theories with the extremal functional method, Phys. Rev. Lett. 111 (2013) 241601 [arXiv:1211.2810] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and AdS superhorizon locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  15. [15]

    Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, JHEP 11 (2013) 140 [arXiv:1212.4103] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    C. Beem, L. Rastelli and B.C. van Rees, The \( \mathcal{N} \) = 4 superconformal bootstrap, Phys. Rev. Lett. 111 (2013) 071601 [arXiv:1304.1803] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N ) vector models, JHEP 06 (2014) 091 [arXiv:1307.6856] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    S. El-Showk et al., Conformal field theories in fractional dimensions, Phys. Rev. Lett. 112 (2014) 141601 [arXiv:1309.5089] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    L.F. Alday and A. Bissi, The superconformal bootstrap for structure constants, arXiv:1310.3757 [INSPIRE].

  20. [20]

    D. Gaiotto, D. Mazac and M.F. Paulos, Bootstrapping the 3d Ising twist defect, JHEP 03 (2014) 100 [arXiv:1310.5078] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning conformal blocks, JHEP 11 (2011) 154 [arXiv:1109.6321] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  23. [23]

    F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys. B 678 (2004) 491 [hep-th/0309180] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  24. [24]

    M. Hogervorst and S. Rychkov, Radial coordinates for conformal blocks, Phys. Rev. D 87 (2013) 106004 [arXiv:1303.1111] [INSPIRE].

    ADS  Google Scholar 

  25. [25]

    G. Mack, D-independent representation of conformal field theories in d dimensions via transformation to auxiliary dual resonance models. Scalar amplitudes, arXiv:0907.2407 [INSPIRE].

  26. [26]

    F.A. Dolan and H. Osborn, Conformal partial waves: further mathematical results, arXiv:1108.6194 [INSPIRE].

  27. [27]

    M. Hogervorst, H. Osborn and S. Rychkov, Diagonal limit for conformal blocks in d dimensions, JHEP 08 (2013) 014 [arXiv:1305.1321] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  28. [28]

    A.L. Fitzpatrick, J. Kaplan and D. Poland, Conformal blocks in the large d limit, JHEP 08 (2013) 107 [arXiv:1305.0004] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  29. [29]

    A.L. Fitzpatrick et al., Covariant approaches to superconformal blocks, arXiv:1402.1167 [INSPIRE].

  30. [30]

    S. Minwalla, Restrictions imposed by superconformal invariance on quantum field theories, Adv. Theor. Math. Phys. 2 (1998) 781 [hep-th/9712074] [INSPIRE].

    Google Scholar 

  31. [31]

    N. Temme, Large parameter cases of the Gauss hypergeometric function, J. Comput. Appl. Math. 153 (2003) 441 [math.CA/0205065].

    ADS  Article  MATH  MathSciNet  Google Scholar 

  32. [32]

    D. Pappadopulo, S. Rychkov, J. Espin and R. Rattazzi, OPE convergence in conformal field theory, Phys. Rev. D 86 (2012) 105043 [arXiv:1208.6449] [INSPIRE].

    ADS  Google Scholar 

  33. [33]

    A.L. Fitzpatrick and J. Kaplan, AdS field theory from conformal field theory, JHEP 02 (2013) 054 [arXiv:1208.0337] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

  34. [34]

    J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03 (2011) 025 [arXiv:1011.1485] [INSPIRE].

    ADS  Article  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Connor Behan.

Additional information

ArXiv ePrint: 1402.5698

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Behan, C. Conformal blocks for highly disparate scaling dimensions. J. High Energ. Phys. 2014, 5 (2014). https://doi.org/10.1007/JHEP09(2014)005

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP09(2014)005

Keywords

  • Conformal and W Symmetry
  • Field Theories in Lower Dimensions
  • Field Theories in Higher Dimensions
  • Conformal Field Models in String Theory