Journal of High Energy Physics

, 2013:123 | Cite as

Cosmological constant, near brane behavior and singularities

  • Fridrik Freyr Gautason
  • Daniel Junghans
  • Marco ZagermannEmail author


We show that the classical cosmological constant in type II flux compactifications can be written as a sum of terms from the action of localized sources plus a specific contribution from non-trivial background fluxes. Exploiting two global scaling symmetries of the classical supergravity action, we find that the flux contribution can in many interesting cases be set to zero such that the cosmological constant is fully determined by the boundary conditions of the fields in the near-source region. This generalizes and makes more explicit previous arguments in the literature. We then discuss the problem of putting \( \overline{\mathrm{D}3} \)-branes at the tip of the Klebanov-Strassler throat glued to a compact space in type IIB string theory so as to engineer a de Sitter solution. Our result for the cosmological constant and a simple global argument indicate that inserting a fully localized and backreacting \( \overline{\mathrm{D}3} \)-brane into such a background yields a singular energy density for the NSNS and RR 3-form field strengths at the \( \overline{\mathrm{D}3} \)-brane. This argument does not rely on partial smearing of the \( \overline{\mathrm{D}3} \)-brane or a linearization of field equations, but on a few general assumptions that we also discuss carefully.


Flux compactifications dS vacua in string theory D-branes Superstring Vacua 


  1. [1]
    M.R. Douglas and R. Kallosh, Compactification on negatively curved manifolds, JHEP 06 (2010) 004 [arXiv:1001.4008] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    J. Blaback, U.H. Danielsson, D. Junghans, T. Van Riet, T. Wrase and M. Zagermann, Smeared versus localised sources in flux compactifications, JHEP 12 (2010) 043 [arXiv:1009.1877] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    J. Blaback, U.H. Danielsson, D. Junghans, T. Van Riet, T. Wrase and M. Zagermann, The problematic backreaction of SUSY-breaking branes, JHEP 08 (2011) 105 [arXiv:1105.4879] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    Y. Aghababaie, C. Burgess, J.M. Cline, H. Firouzjahi, S. Parameswaran, F. Quevedo, G. Tasinato and I. Zavala, Warped brane worlds in six-dimensional supergravity, JHEP 09 (2003) 037 [hep-th/0308064] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    C. Burgess, A. Maharana, L. van Nierop, A. Nizami and F. Quevedo, On brane back-reaction and de Sitter solutions in higher-dimensional supergravity, JHEP 04 (2012) 018 [arXiv:1109.0532] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    F.F. Gautason, D. Junghans and M. Zagermann, On cosmological constants from α-corrections, JHEP 06 (2012) 029 [arXiv:1204.0807] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    E. Witten, Dimensional reduction of superstring models, Phys. Lett. B 155 (1985) 151 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    C. Burgess, A. Font and F. Quevedo, Low-energy effective action for the superstring, Nucl. Phys. B 272 (1986) 661 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χSB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].MathSciNetADSGoogle Scholar
  11. [11]
    S. Kachru, J. Pearson and H.L. Verlinde, Brane/flux annihilation and the string dual of a nonsupersymmetric field theory, JHEP 06 (2002) 021 [hep-th/0112197] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    O. DeWolfe, S. Kachru and M. Mulligan, A gravity dual of metastable dynamical supersymmetry breaking, Phys. Rev. D 77 (2008) 065011 [arXiv:0801.1520] [INSPIRE].MathSciNetADSGoogle Scholar
  14. [14]
    P. McGuirk, G. Shiu and Y. Sumitomo, Non-supersymmetric infrared perturbations to the warped deformed conifold, Nucl. Phys. B 842 (2011) 383 [arXiv:0910.4581] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    I. Bena, M. Graña and N. Halmagyi, On the existence of meta-stable vacua in Klebanov-Strassler, JHEP 09 (2010) 087 [arXiv:0912.3519] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    I. Bena, G. Giecold, M. Graña, N. Halmagyi and S. Massai, On metastable vacua and the warped deformed conifold: analytic results, Class. Quant. Grav. 30 (2013) 015003 [arXiv:1102.2403] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    I. Bena, G. Giecold, M. Graña, N. Halmagyi and S. Massai, The backreaction of \( \mathrm{D}3 \) branes on the Klebanov-Strassler geometry, JHEP 06 (2013) 060 [arXiv:1106.6165] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Dymarsky, On gravity dual of a metastable vacuum in Klebanov-Strassler theory, JHEP 05 (2011) 053 [arXiv:1102.1734] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    S. Massai, A comment on anti-brane singularities in warped throats, arXiv:1202.3789 [INSPIRE].
  20. [20]
    I. Bena, M. Graña, S. Kuperstein and S. Massai, \( \overline{{\mathrm{D}3}}\hbox{'}s \)singular to the bitter end, Phys. Rev. D 87 (2013) 106010 [arXiv:1206.6369] [INSPIRE].ADSGoogle Scholar
  21. [21]
    I. Bena, M. Graña, S. Kuperstein and S. Massai, Polchinski-Strassler does not uplift Klebanov-Strassler, arXiv:1212.4828 [INSPIRE].
  22. [22]
    I. Bena, A. Buchel and O.J. Dias, Horizons cannot save the landscape, Phys. Rev. D 87 (2013) 063012 [arXiv:1212.5162] [INSPIRE].ADSGoogle Scholar
  23. [23]
    J. Blaback, U.H. Danielsson and T. Van Riet, Resolving anti-brane singularities through time-dependence, JHEP 02 (2013) 061 [arXiv:1202.1132] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J. Blaback, U.H. Danielsson, D. Junghans, T. Van Riet, T. Wrase and M. Zagermann, (Anti-)brane backreaction beyond perturbation theory, JHEP 02 (2012) 025 [arXiv:1111.2605] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    I. Bena, D. Junghans, S. Kuperstein, T. Van Riet, T. Wrase and M. Zagermann, Persistent anti-brane singularities, JHEP 10 (2012) 078 [arXiv:1205.1798] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    P. Koerber, Lectures on generalized complex geometry for physicists, Fortsch. Phys. 59 (2011) 169 [arXiv:1006.1536] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  27. [27]
    E. Bergshoeff, R. Kallosh, T. Ortín, D. Roest and A. Van Proeyen, New formulations of D = 10 supersymmetry and D8-O8 domain walls, Class. Quant. Grav. 18 (2001) 3359 [hep-th/0103233] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  28. [28]
    C.G. Callan Jr., C. Lovelace, C. Nappi and S. Yost, String loop corrections to β-functions, Nucl. Phys. B 288 (1987) 525 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    E. Cremmer, H. Lü, C. Pope and K. Stelle, Spectrum generating symmetries for BPS solitons, Nucl. Phys. B 520 (1998) 132 [hep-th/9707207] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    P.G. Freund and M.A. Rubin, Dynamics of dimensional reduction, Phys. Lett. B 97 (1980) 233 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux, JHEP 08 (1999) 023 [hep-th/9908088] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    S. Gukov, C. Vafa and E. Witten, CFTs from Calabi-Yau four folds, Nucl. Phys. B 584 (2000) 69 [Erratum ibid. B 608 (2001) 477] [hep-th/9906070] [INSPIRE].
  33. [33]
    K. Becker and M. Becker, M theory on eight manifolds, Nucl. Phys. B 477 (1996) 155 [hep-th/9605053] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    B.R. Greene, K. Schalm and G. Shiu, Warped compactifications in M and F theory, Nucl. Phys. B 584 (2000) 480 [hep-th/0004103] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    B. Janssen, P. Meessen and T. Ortín, The D8-brane tied up: string and brane solutions in massive type IIA supergravity, Phys. Lett. B 453 (1999) 229 [hep-th/9901078] [INSPIRE].
  36. [36]
    C. Caviezel, P. Koerber, S. Körs, D. Lüst, T. Wrase and M. Zagermann, On the cosmology of type IIA compactifications on SU(3)-structure manifolds, JHEP 04 (2009) 010 [arXiv:0812.3551] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    U.H. Danielsson, S.S. Haque, P. Koerber, G. Shiu, T. Van Riet and T. Wrase, De Sitter hunting in a classical landscape, Fortsch. Phys. 59 (2011) 897 [arXiv:1103.4858] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, Type IIA moduli stabilization, JHEP 07 (2005) 066 [hep-th/0505160] [INSPIRE].MathSciNetADSGoogle Scholar
  39. [39]
    B.S. Acharya, F. Benini and R. Valandro, Fixing moduli in exact type IIA flux vacua, JHEP 02 (2007) 018 [hep-th/0607223] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    T. Banks and K. van den Broek, Massive IIA flux compactifications and U-dualities, JHEP 03 (2007) 068 [hep-th/0611185] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    F. Saracco and A. Tomasiello, Localized O6-plane solutions with Romans mass, JHEP 07 (2012) 077 [arXiv:1201.5378] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    J. McOrist and S. Sethi, M-theory and type IIA flux compactifications, JHEP 12 (2012) 122 [arXiv:1208.0261] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    P. Candelas and X.C. de la Ossa, Comments on conifolds, Nucl. Phys. B 342 (1990) 246 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    R. Minasian and D. Tsimpis, On the geometry of nontrivially embedded branes, Nucl. Phys. B 572 (2000) 499 [hep-th/9911042] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    P. Koerber and L. Martucci, From ten to four and back again: how to generalize the geometry, JHEP 08 (2007) 059 [arXiv:0707.1038] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  46. [46]
    D. Baumann, A. Dymarsky, S. Kachru, I.R. Klebanov and L. McAllister, D3-brane potentials from fluxes in AdS/CFT, JHEP 06 (2010) 072 [arXiv:1001.5028] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    A. Dymarsky and L. Martucci, D-brane non-perturbative effects and geometric deformations, JHEP 04 (2011) 061 [arXiv:1012.4018] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    B. Heidenreich, L. McAllister and G. Torroba, Dynamic SU(2) structure from seven-branes, JHEP 05 (2011) 110 [arXiv:1011.3510] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    I. Bena, J. Blaback, U. Danielsson and T. Van Riet, Antibranes dont go black, Phys. Rev. D 87 (2013) 104023 [arXiv:1301.7071] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Fridrik Freyr Gautason
    • 1
  • Daniel Junghans
    • 1
    • 2
  • Marco Zagermann
    • 1
    Email author
  1. 1.Institut für Theoretische Physik & Center for Quantum Engineering and Spacetime ResearchLeibniz Universität HannoverHannoverGermany
  2. 2.Department of Physics & Institute for Advanced StudyHong Kong University of Science and TechnologyKowloonHong Kong

Personalised recommendations