Advertisement

Journal of High Energy Physics

, 2013:103 | Cite as

Charm mass determination from QCD charmonium sum rules at order \( \alpha_s^3 \)

  • Bahman Dehnadi
  • Andre H. Hoang
  • Vicent MateuEmail author
  • S. Mohammad Zebarjad
Article

Abstract

We determine the \( \overline{\mathrm{MS}} \) charm quark mass from a charmonium QCD sum rules analysis. On the theoretical side we use input from perturbation theory at \( \mathcal{O}\left( {\alpha_s^3} \right) \). Improvements with respect to previous \( \mathcal{O}\left( {\alpha_s^3} \right) \) analyses include (1) an account of all available e + e hadronic cross section data and (2) a thorough analysis of perturbative uncertainties. Using a data clustering method to combine hadronic cross section data sets from different measurements we demonstrate that using all available experimental data up to c.m. energies of 10.538 GeV allows for determinations of experimental moments and their correlations with small errors and that there is no need to rely on theoretical input above the charmonium resonances. We also show that good convergence properties of the perturbative series for the theoretical sum rule moments need to be considered with some care when extracting the charm mass and demonstrate how to set up a suitable set of scale variations to obtain a proper estimate of the perturbative uncertainty. As the final outcome of our analysis we obtain \( {{\overline{m}}_c}\left( {{{\overline{m}}_c}} \right)=1.282\pm {{\left( {0.006} \right)}_{\mathrm{stat}}}\pm {{\left( {0.009} \right)}_{\mathrm{syst}}}\pm {{\left( {0.019} \right)}_{\mathrm{pert}}}\pm {{\left( {0.010} \right)}_{{{\alpha_s}}}}\pm {{\left( {0.002} \right)}_{{\left\langle {GG} \right\rangle }}}\mathrm{GeV} \). The perturbative error is an order of magnitude larger than the one obtained in previous \( \mathcal{O}\left( {\alpha_s^3} \right) \) sum rule analyses.

Keywords

Sum Rules QCD 

References

  1. [1]
    M. Antonelli et al., Flavor Physics in the Quark Sector, Phys. Rept. 494 (2010) 197 [arXiv:0907.5386] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    V. Novikov et al., Charmonium and Gluons: Basic Experimental Facts and Theoretical Introduction, Phys. Rept. 41 (1978) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M.A. Shifman, A. Vainshtein and V.I. Zakharov, QCD and Resonance Physics. Sum Rules, Nucl. Phys. B 147 (1979) 385 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M.A. Shifman, A. Vainshtein and V.I. Zakharov, QCD and Resonance Physics: Applications, Nucl. Phys. B 147 (1979) 448 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J.H. Kuhn and M. Steinhauser, Determination of αs and heavy quark masses from recent measurements of R(s), Nucl. Phys. B 619 (2001) 588 [Erratum ibid. B 640 (2002) 415] [hep-ph/0109084] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A.O.G. Kallen and A. Sabry, Fourth order vacuum polarization, Kong. Dan. Vid. Sel. Mat. Fys. Med. 29N17 (1955) 1.Google Scholar
  7. [7]
    K. Chetyrkin, J.H. Kuhn and M. Steinhauser, Heavy quark vacuum polarization to three loops, Phys. Lett. B 371 (1996) 93 [hep-ph/9511430] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    K. Chetyrkin, J.H. Kuhn and M. Steinhauser, Three loop polarization function and O (alpha-S 2 ) corrections to the production of heavy quarks, Nucl. Phys. B 482 (1996) 213 [hep-ph/9606230] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    R. Boughezal, M. Czakon and T. Schutzmeier, Four-Loop Tadpoles: Applications in QCD, Nucl. Phys. Proc. Suppl. 160 (2006) 160 [hep-ph/0607141] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Czakon and T. Schutzmeier, Double fermionic contributions to the heavy-quark vacuum polarization, JHEP 07 (2008) 001 [arXiv:0712.2762] [INSPIRE].ADSGoogle Scholar
  11. [11]
    A. Maier, P. Maierhofer and P. Marquard, Higher Moments of Heavy Quark Correlators in the Low Energy Limit at \( O\left( {\alpha_s^2} \right) \) , Nucl. Phys. B 797 (2008) 218 [arXiv:0711.2636] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    K. Chetyrkin, J.H. Kuhn and C. Sturm, Four-loop moments of the heavy quark vacuum polarization function in perturbative QCD, Eur. Phys. J. C 48 (2006) 107 [hep-ph/0604234] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    R. Boughezal, M. Czakon and T. Schutzmeier, Charm and bottom quark masses from perturbative QCD, Phys. Rev. D 74 (2006) 074006 [hep-ph/0605023] [INSPIRE].ADSGoogle Scholar
  14. [14]
    A. Maier, P. Maierhofer and P. Marqaurd, The Second physical moment of the heavy quark vector correlator at \( O\left( {\alpha_s^2} \right) \) , Phys. Lett. B 669 (2008) 88 [arXiv:0806.3405] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Maier, P. Maierhofer, P. Marquard and A. Smirnov, Low energy moments of heavy quark current correlators at four loops, Nucl. Phys. B 824 (2010) 1 [arXiv:0907.2117] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    A.H. Hoang, V. Mateu and S. Mohammad Zebarjad, Heavy Quark Vacuum Polarization Function at \( O\left( {\alpha_s^2} \right) \) and \( O\left( {\alpha_s^3} \right) \) , Nucl. Phys. B 813 (2009) 349 [arXiv:0807.4173] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    Y. Kiyo, A. Maier, P. Maierhofer and P. Marquard, Reconstruction of heavy quark current correlators at \( O\left( {\alpha_s^3} \right) \), Nucl. Phys. B 823 (2009) 269 [arXiv:0907.2120] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    D. Greynat and S. Peris, Resummation of Threshold, Low- and High-Energy Expansions for Heavy-Quark Correlators, Phys. Rev. D 82 (2010) 034030 [Erratum ibid. D 82 (2010) 119907] [arXiv:1006.0643] [INSPIRE].ADSGoogle Scholar
  19. [19]
    D.J. Broadhurst et al., Two loop gluon condensate contributions to heavy quark current correlators: exact results and approximations, Phys. Lett. B 329 (1994) 103 [hep-ph/9403274] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    BES collaboration, J. Bai et al., Measurement of the total cross-section for hadronic production by e + e annihilation at energies between 2.6-GeV - 5-GeV, Phys. Rev. Lett. 84 (2000) 594 [hep-ex/9908046] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    BES collaboration, J. Bai et al., Measurements of the cross-section for e + e hadrons at center-of-mass energies from 2-GeV to 5-GeV, Phys. Rev. Lett. 88 (2002) 101802 [hep-ex/0102003] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    BES collaboration, M. Ablikim et al., Measurement of Cross sections for \( {D^0}{{\overline{D}}^0} \) and D + D Production in e + e Annihilation at \( \sqrt{s} \) = 3.773 GeV, Phys. Lett. B 603 (2004) 130 [hep-ex/0411013] [INSPIRE].ADSGoogle Scholar
  23. [23]
    BES collaboration, M. Ablikim et al., Measurements of the cross-sections for e + e hadrons at 3.650-GeV, 3.6648-GeV, 3.773-GeV and the branching fraction for ψ(3770) → non \( D\overline{D} \) , Phys. Lett. B 641 (2006) 145 [hep-ex/0605105] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    M. Ablikim et al., Measurements of the continuum R uds and R values in e + e annihilation in the energy region between 3.650 and 3.872-GeV, Phys. Rev. Lett. 97 (2006) 262001 [hep-ex/0612054] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    BES Bollaboration collaboration, M. Ablikim et al., R value measurements for e + e annihilation at 2.60-GeV, 3.07-GeV and 3.65-GeV, Phys. Lett. B 677 (2009) 239 [arXiv:0903.0900] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    Osterheld et al., Measurements of total hadronic and inclusive D cross-sections in e + e annihilations between 3.87 GeV and 4.5 GeV, SLAC-PUB-4160.
  27. [27]
    C. Edwards et al., Hadron production in e + e annihilation from s 1/2 = 5 GeV to 7.4 GeV, SLAC-PUB-5160.Google Scholar
  28. [28]
    CLEO collaboration, R. Ammar et al., A Measurement of the total cross-section for e + e hadrons at \( \sqrt{s} \) = 10.5 2-GeV, Phys. Rev. D 57 (1998) 1350 [hep-ex/9707018] [INSPIRE].ADSGoogle Scholar
  29. [29]
    CLEO collaboration, D. Besson et al., Observation of New Structure in the e + e Annihilation Cross-Section Above \( B\overline{B} \) Threshold, Phys. Rev. Lett. 54 (1985) 381 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    CLEO collaboration, D. Besson et al., Measurement of the Total Hadronic Cross section in e + e Annihilations below 10.56-GeV, Phys. Rev. D 76 (2007) 072008 [arXiv:0706.2813] [INSPIRE].ADSGoogle Scholar
  31. [31]
    CLEO collaboration, D. Cronin-Hennessy et al., Measurement of Charm Production Cross sections in e + e Annihilation at Energies between 3.97 and 4.26-GeV, Phys. Rev. D 80 (2009) 072001 [arXiv:0801.3418] [INSPIRE].ADSGoogle Scholar
  32. [32]
    A. Blinov et al., The Measurement of R in e + e annihilation at center-of-mass energies between 7.2-GeV and 10.34-GeV, Z. Phys. C 70 (1996) 31 [INSPIRE].ADSGoogle Scholar
  33. [33]
    L. Criegee and G. Knies, Review of e + e Experiments With Pluto From 3-GeV to 31-GeV, Phys. Rept. 83 (1982) 151 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    J. Siegrist et al., Observation of a Resonance at 4.4-GeV and Additional Structure Near 4.1-GeV in e + e Annihilation, Phys. Rev. Lett. 36 (1976) 700 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    P.A. Rapidis et al., Observation of a Resonance in e + e Annihilation Just Above Charm Threshold, Phys. Rev. Lett. 39 (1977) 526 [Erratum ibid. 39 (1977) 974] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    G. Abrams et al., Measurement of the Parameters of the ψ ′′(3770) Resonance, Phys. Rev. D 21 (1980) 2716 [INSPIRE].ADSGoogle Scholar
  37. [37]
    J. Siegrist et al., Hadron Production by e + e Annihilation at Center-Of-Mass Energies Between 2.6-GeV and 7.8-GeV. Part 1. Total Cross-Section, Multiplicities and Inclusive Momentum Distributions, Phys. Rev. D 26 (1982) 969 [INSPIRE].ADSGoogle Scholar
  38. [38]
    A. Hoang and M. Jamin, MSBAR charm mass from charmonium sum rules with contour improvement, Phys. Lett. B 594 (2004) 127 [hep-ph/0403083] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    K. Chetyrkin et al., Charm and Bottom Quark Masses: an Update, Phys. Rev. D 80 (2009) 074010 [arXiv:0907.2110] [INSPIRE].ADSGoogle Scholar
  40. [40]
    J.H. Kuhn, M. Steinhauser and C. Sturm, Heavy Quark Masses from Sum Rules in Four-Loop Approximation, Nucl. Phys. B 778 (2007) 192 [hep-ph/0702103] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    Particle Data Group collaboration, W. Yao et al., Review of Particle Physics, J. Phys. G 33 (2006) 1 [INSPIRE].ADSGoogle Scholar
  42. [42]
    HPQCD collaboration, I. Allison et al., High-Precision Charm-Quark Mass from Current-Current Correlators in Lattice and Continuum QCD, Phys. Rev. D 78 (2008) 054513 [arXiv:0805.2999] [INSPIRE].ADSGoogle Scholar
  43. [43]
    C. McNeile, C. Davies, E. Follana, K. Hornbostel and G. Lepage, High-Precision c and b Masses and QCD Coupling from Current-Current Correlators in Lattice and Continuum QCD, Phys. Rev. D 82 (2010) 034512 [arXiv:1004.4285] [INSPIRE].ADSGoogle Scholar
  44. [44]
    S. Bodenstein, J. Bordes, C. Dominguez, J. Penarrocha and K. Schilcher, QCD sum rule determination of the charm-quark mass, Phys. Rev. D 83 (2011) 074014 [arXiv:1102.3835] [INSPIRE].ADSGoogle Scholar
  45. [45]
    J. Penarrocha and K. Schilcher, QCD duality and the mass of the charm quark, Phys. Lett. B 515 (2001) 291 [hep-ph/0105222] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    G. D’Agostini, On the use of the covariance matrix to fit correlated data, Nucl. Instrum. Meth. A 346 (1994) 306 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    T. Takeuchi, The Status of the determination of α(m Z) and αs(m Z), Prog. Theor. Phys. Suppl. 123 (1996) 247 [hep-ph/9603415] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    K. Hagiwara, A. Martin, D. Nomura and T. Teubner, Predictions for g-2 of the muon and \( {\alpha_{QED }}\left( {M_Z^2} \right) \), Phys. Rev. D 69 (2004) 093003 [hep-ph/0312250] [INSPIRE].ADSGoogle Scholar
  49. [49]
    F. Le Diberder and A. Pich, The perturbative QCD prediction to R τ revisited, Phys. Lett. B 286 (1992) 147 [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    A. Pivovarov, Renormalization group analysis of the tau lepton decay within QCD, Z. Phys. C 53 (1992) 461 [hep-ph/0302003] [INSPIRE].ADSGoogle Scholar
  51. [51]
    E. Braaten, S. Narison and A. Pich, QCD analysis of the tau hadronic width, Nucl. Phys. B 373 (1992) 581 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    S. Narison and A. Pich, QCD Formulation of the tau Decay and Determination of ΛMS , Phys. Lett. B 211 (1988) 183 [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    E. Braaten, The Perturbative QCD Corrections to the Ratio R for tau Decay, Phys. Rev. D 39 (1989) 1458 [INSPIRE].ADSGoogle Scholar
  54. [54]
    E. Braaten, QCD Predictions for the Decay of the tau Lepton, Phys. Rev. Lett. 60 (1988) 1606 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    P. Baikov, V. Ilyin and V.A. Smirnov, Gluon condensate fit from the two loop correction to the coefficient function, Phys. Atom. Nucl. 56 (1993) 1527 [INSPIRE].ADSGoogle Scholar
  56. [56]
    K. Chetyrkin et al., Precise Charm- and Bottom-Quark Masses: Theoretical and Experimental Uncertainties, Theor. Math. Phys. 170 (2012) 217 [arXiv:1010.6157] [INSPIRE].CrossRefGoogle Scholar
  57. [57]
    S. Narison and R. Tarrach, Higher Dimensional Renormalization Group Invariant Vacuum Condensates in Quantum Chromodynamics, Phys. Lett. B 125 (1983) 217 [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    B. Ioffe, QCD at low energies, Prog. Part. Nucl. Phys. 56 (2006) 232 [hep-ph/0502148] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    A. Hoang, Bottom quark mass from Upsilon mesons, Phys. Rev. D 59 (1999) 014039 [hep-ph/9803454] [INSPIRE].ADSGoogle Scholar
  60. [60]
    O. Tarasov, A. Vladimirov and A.Y. Zharkov, The Gell-Mann-Low Function of QCD in the Three Loop Approximation, Phys. Lett. B 93 (1980) 429 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    S. Larin and J. Vermaseren, The Three loop QCD β-function and anomalous dimensions, Phys. Lett. B 303 (1993) 334 [hep-ph/9302208] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    T. van Ritbergen, J. Vermaseren and S. Larin, The Four loop β-function in quantum chromodynamics, Phys. Lett. B 400 (1997) 379 [hep-ph/9701390] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    K. Chetyrkin, Quark mass anomalous dimension to \( O\left( {\alpha_s^4} \right) \), Phys. Lett. B 404 (1997) 161 [hep-ph/9703278] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    J. Vermaseren, S. Larin and T. van Ritbergen, The four loop quark mass anomalous dimension and the invariant quark mass, Phys. Lett. B 405 (1997) 327 [hep-ph/9703284] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  66. [66]
    D. Nomura and T. Teubner, private communication.Google Scholar
  67. [67]
    S. Bodenstein, J. Bordes, C. Dominguez, J. Penarrocha and K. Schilcher, Charm-quark mass from weighted finite energy QCD sum rules, Phys. Rev. D 82 (2010) 114013 [arXiv:1009.4325] [INSPIRE].ADSGoogle Scholar
  68. [68]
    S. Narison, Gluon condensates and c, b quark masses from quarkonia ratios of moments, Phys. Lett. B 693 (2010) 559 [Erratum ibid. 705 (2011) 544] [arXiv:1004.5333] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    K. Chetyrkin, A. Kataev and F. Tkachov, Higher Order Corrections to σt(e + e → Hadrons) in Quantum Chromodynamics, Phys. Lett. B 85 (1979) 277 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    M. Dine and J. Sapirstein, Higher Order QCD Corrections in e + e Annihilation, Phys. Rev. Lett. 43 (1979) 668 [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    W. Celmaster and R.J. Gonsalves, An Analytic Calculation of Higher Order Quantum Chromodynamic Corrections in e + e Annihilation, Phys. Rev. Lett. 44 (1980) 560 [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    S. Gorishnii, A. Kataev and S. Larin, Next-To-Leading \( O\left( {\alpha_s^3} \right) \) QCD Correction to σt(e + e → Hadrons): Analytical Calculation and Estimation of the Parameter Lambda (MS), Phys. Lett. B 212 (1988) 238 [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    S. Gorishnii, A. Kataev and S. Larin, Correction \( O\left( {\alpha_s^3} \right) \) to σtot(e + e → hadrons) in quantum chromodynamics, JETP Lett. 53 (1991) 127 [INSPIRE].ADSGoogle Scholar
  74. [74]
    W. Bernreuther and W. Wetzel, Order \( \alpha_s^2 \) Massive Quark Contribution to the Vacuum Polarization of Massless Quarks, Z.Phys. C 11 (1981) 113.ADSGoogle Scholar
  75. [75]
    S. Gorishnii, A. Kataev and S. Larin, Three Loop Corrections of Order O(M 2) to the Correlator of Electromagnetic Quark Currents, Nuovo Cim. A 92 (1986) 119 [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    K. Chetyrkin and A. Kwiatkowski, Mass corrections to the tau decay rate, Z. Phys. C 59 (1993) 525 [hep-ph/9805232] [INSPIRE].ADSGoogle Scholar
  77. [77]
    K. Chetyrkin and J.H. Kuhn, Quartic mass corrections to R had, Nucl. Phys. B 432 (1994) 337 [hep-ph/9406299] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    K. Chetyrkin, R. Harlander and J.H. Kuhn, Quartic mass corrections to R had at order \( \alpha_s^3 \), Nucl. Phys. B 586 (2000) 56 [Erratum ibid. B 634 (2002) 413] [hep-ph/0005139] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    A. Hoang and T. Teubner, Analytic calculation of two loop corrections to heavy quark pair production vertices induced by light quarks, Nucl. Phys. B 519 (1998) 285 [hep-ph/9707496] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    A. Hoang, M. Jezabek, J.H. Kuhn and T. Teubner, Radiation of heavy quarks, Phys. Lett. B 338 (1994) 330 [hep-ph/9407338] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    T. Gehrmann, G. Luisoni and P.F. Monni, Power corrections in the dispersive model for a determination of the strong coupling constant from the thrust distribution, Eur. Phys. J. C 73 (2013) 2265 [arXiv:1210.6945] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Precision Thrust Cumulant Moments at N 3 LL, Phys. Rev. D 86 (2012) 094002 [arXiv:1204.5746] [INSPIRE].ADSGoogle Scholar
  84. [84]
    R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Thrust at N 3 LL with Power Corrections and a Precision Global Fit for αs(m Z ), Phys. Rev. D 83 (2011) 074021 [arXiv:1006.3080] [INSPIRE].ADSGoogle Scholar
  85. [85]
    R. Frederix, S. Frixione, K. Melnikov and G. Zanderighi, NLO QCD corrections to five-jet production at LEP and the extraction of αs(M Z ), JHEP 11 (2010) 050 [arXiv:1008.5313] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    T. Gehrmann, M. Jaquier and G. Luisoni, Hadronization effects in event shape moments, Eur. Phys. J. C 67 (2010) 57 [arXiv:0911.2422] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    J. Blumlein, H. Bottcher and A. Guffanti, Non-singlet QCD analysis of deep inelastic world data at \( O\left( {\alpha_s^3} \right) \), Nucl. Phys. B 774 (2007) 182 [hep-ph/0607200] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    J. Blumlein and H. Bottcher, QCD Analysis of Polarized Deep Inelastic Scattering Data, Nucl. Phys. B 841 (2010) 205 [arXiv:1005.3113] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    S. Bethke, The 2009 World Average of αs(M Z ), Eur. Phys. J. C 64 (2009) 689 [arXiv:0908.1135] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    S. Alekhin, J. Blümlein, K. Daum, K. Lipka and S. Moch, Precise charm-quark mass from deep-inelastic scattering, Phys. Lett. B 720 (2013) 172 [arXiv:1212.2355] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    S. Alekhin, K. Daum, K. Lipka and S. Moch, Determination of the charm-quark mass in the MS-bar scheme using charm production data from deep inelastic scattering at HERA, Phys. Lett. B 718 (2012) 550 [arXiv:1209.0436] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    A. Grozin and C. Sturm, Correlator of heavy-quark currents at small Q 2 in the large-β 0 limit, Eur. Phys. J. C 40 (2005) 157 [hep-ph/0412040] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    J. Portoles and P. Ruiz-Femenia, On the massless contributions to the vacuum polarization of heavy quarks, J. Phys. G 29 (2003) 349 [hep-ph/0107324] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    J. Portoles and P. Ruiz-Femenia, New contributions to heavy quark sum rules, Eur. Phys. J. C 24 (2002) 439 [hep-ph/0202114] [INSPIRE].Google Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Bahman Dehnadi
    • 1
    • 2
  • Andre H. Hoang
    • 2
    • 3
  • Vicent Mateu
    • 3
    • 4
    • 5
    Email author
  • S. Mohammad Zebarjad
    • 1
  1. 1.Physics DepartmentShiraz UniversityShirazIran
  2. 2.Faculty of PhysicsUniversity of ViennaViennaAustria
  3. 3.Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)MünchenGermany
  4. 4.Center for Theoretical Physics, Massachusetts Institute of TechnologyCambridgeU.S.A
  5. 5.Instituto de Física CorpuscularUniversitat de València — Consejo Superior de Investigaciones Científicas, Parc CientíficValenciaSpain

Personalised recommendations