Journal of High Energy Physics

, 2013:81 | Cite as

Multi-loop open string amplitudes and their field theory limit

  • Lorenzo Magnea
  • Sam Playle
  • Rodolfo Russo
  • Stefano Sciuto
Article

Abstract

We study the field theory limit of multi-loop (super)string amplitudes, with the aim of clarifying their relationship to Feynman diagrams describing the dynamics of the massless states. We propose an explicit map between string moduli around degeneration points and Schwinger proper-times characterizing individual Feynman diagram topologies. This makes it possible to identify the contribution of each light string state within the full string amplitude and to extract the field theory Feynman rules selected by (covariantly quantized) string theory. The connection between string and field theory amplitudes also provides a concrete tool to clarify ambiguities related to total derivatives over moduli space: in the superstring case, consistency with the field theory results selects a specific prescription for integrating over supermoduli. In this paper, as an example, we focus on open strings supported by parallel D-branes, and we present two-loop examples drawn from bosonic and RNS string theories, highlighting the common features between the two setups.

Keywords

Scattering Amplitudes Superstrings and Heterotic Strings D-branes Bosonic Strings 

References

  1. [1]
    V. Alessandrini and D. Amati, Properties of dual multiloop amplitudes, Nuovo Cim. A 4 (1971) 793 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    E.P. Verlinde and H.L. Verlinde, Multiloop calculations in covariant superstring theory, Phys. Lett. B 192 (1987) 95 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    E. D’Hoker and D. Phong, The geometry of string perturbation theory, Rev. Mod. Phys. 60 (1988) 917 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    E. D’Hoker and D. Phong, Lectures on two loop superstrings, Conf. Proc. C 0208124 (2002) 85 [hep-th/0211111] [INSPIRE].Google Scholar
  5. [5]
    E. Witten, Superstring perturbation theory revisited, arXiv:1209.5461 [INSPIRE].
  6. [6]
    J. Scherk, Zero-slope limit of the dual resonance model, Nucl. Phys. B 31 (1971) 222 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    J.-L. Gervais and A. Neveu, Feynman rules for massive gauge fields with dual diagram topology, Nucl. Phys. B 46 (1972) 381 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M.L. Mangano, S.J. Parke and Z. Xu, Duality and multi-gluon scattering, Nucl. Phys. B 298 (1988) 653 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    Z. Bern and D.A. Kosower, The computation of loop amplitudes in gauge theories, Nucl. Phys. B 379 (1992) 451 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to five gluon amplitudes, Phys. Rev. Lett. 70 (1993) 2677 [hep-ph/9302280] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    Z. Bern, D.C. Dunbar and T. Shimada, String based methods in perturbative gravity, Phys. Lett. B 312 (1993) 277 [hep-th/9307001] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    P. Di Vecchia, L. Magnea, A. Lerda, R. Russo and R. Marotta, String techniques for the calculation of renormalization constants in field theory, Nucl. Phys. B 469 (1996) 235 [hep-th/9601143] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Frizzo, L. Magnea and R. Russo, Scalar field theory limits of bosonic string amplitudes, Nucl. Phys. B 579 (2000) 379 [hep-th/9912183] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    A. Frizzo, L. Magnea and R. Russo, Systematics of one loop Yang-Mills diagrams from bosonic string amplitudes, Nucl. Phys. B 604 (2001) 92 [hep-ph/0012129] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    Z. Bern and D.A. Kosower, Color decomposition of one loop amplitudes in gauge theories, Nucl. Phys. B 362 (1991) 389 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    R. Metsaev and A.A. Tseytlin, On loop corrections to string theory effective actions, Nucl. Phys. B 298 (1988) 109 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    C. Bachas and M. Porrati, Pair creation of open strings in an electric field, Phys. Lett. B 296 (1992) 77 [hep-th/9209032] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    L. Magnea, R. Russo and S. Sciuto, Two-loop Euler-Heisenberg effective actions from charged open strings, Int. J. Mod. Phys. A 21 (2006) 533 [hep-th/0412087] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    R. Russo and S. Sciuto, The twisted open string partition function and Yukawa couplings, JHEP 04 (2007) 030 [hep-th/0701292] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    G.V. Dunne, Heisenberg-Euler effective lagrangians: basics and extensions, hep-th/0406216 [INSPIRE].
  21. [21]
    L. Álvarez-Gaumé, C. Gomez, G.W. Moore and C. Vafa, Strings in the operator formalism, Nucl. Phys. B 303 (1988) 455 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    P. Di Vecchia et al., N -point g-loop vertex for a free bosonic theory with vacuum charge q, Nucl. Phys. B 322 (1989) 317 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    L. Álvarez-Gaumé, C. Gomez, P.C. Nelson, G. Sierra and C. Vafa, Fermionic strings in the operator formalism, Nucl. Phys. B 311 (1988) 333 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    Z. Bern and D.C. Dunbar, A mapping between Feynman and string motivated one loop rules in gauge theories, Nucl. Phys. B 379 (1992) 562 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    E. Witten, More on superstring perturbation theory, arXiv:1304.2832 [INSPIRE].
  26. [26]
    E. Witten, Notes on super Riemann surfaces and their moduli, arXiv:1209.2459 [INSPIRE].
  27. [27]
    E.J. Martinec, Conformal field theory on a (super)riemann surface, Nucl. Phys. B 281 (1987) 157 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    A. Neveu and P.C. West, Neveu-Schwarz excited string scattering: a superconformal group computation, Phys. Lett. B 200 (1988) 275 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    P. Di Vecchia, K. Hornfeck, M. Frau, A. Lerda and S. Sciuto, N -string, g-loop vertex for the fermionic string, Phys. Lett. B 211 (1988) 301 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    K. Hornfeck, Three reggeon light cone vertex of the Neveu-Schwarz string, Nucl. Phys. B 293 (1987) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    P. Di Vecchia, M. Frau, A. Lerda and S. Sciuto, A simple expression for the multiloop amplitude in the bosonic string, Phys. Lett. B 199 (1987) 49 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    R. Russo and S. Sciuto, Twisted determinants on higher genus Riemann surfaces, Nucl. Phys. B 669 (2003) 207 [hep-th/0306129] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    P. Di Vecchia, L. Magnea, A. Lerda, R. Marotta and R. Russo, Two loop scalar diagrams from string theory, Phys. Lett. B 388 (1996) 65 [hep-th/9607141] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    G. Cristofano, F. Nicodemi and R. Pettorino, Covariant basic operators in bosonic string theory, Int. J. Mod. Phys. A 4 (1989) 857 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    J. Polchinski, String theory. Volume 1: an introduction to the bosonic string, Cambridge University Press, Cambridge U.K. (2005).Google Scholar
  36. [36]
    J.M. Pawlowski, M.G. Schmidt and J.-H. Zhang, On the Yang-Mills two-loop effective action with wordline methods, Phys. Lett. B 677 (2009) 100 [arXiv:0812.0008] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    L. Abbott, The background field method beyond one loop, Nucl. Phys. B 185 (1981) 189 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    P. Goddard, J. Goldstone, C. Rebbi and C.B. Thorn, Quantum dynamics of a massless relativistic string, Nucl. Phys. B 56 (1973) 109 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    C.B. Thorn, A world sheet description of planar Yang-Mills theory, Nucl. Phys. B 637 (2002) 272 [Erratum ibid. B 648 (2003) 457] [hep-th/0203167] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    T. Banks, W. Fischler, S. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].MathSciNetADSGoogle Scholar
  41. [41]
    C. Bachas, D-brane dynamics, Phys. Lett. B 374 (1996) 37 [hep-th/9511043] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. [42]
    M. Billó, P. Di Vecchia and D. Cangemi, Boundary states for moving D-branes, Phys. Lett. B 400 (1997) 63 [hep-th/9701190] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    Y. Okawa and T. Yoneya, Multibody interactions of D-particles in supergravity and matrix theory, Nucl. Phys. B 538 (1999) 67 [hep-th/9806108] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Lorenzo Magnea
    • 1
  • Sam Playle
    • 2
  • Rodolfo Russo
    • 2
  • Stefano Sciuto
    • 1
  1. 1.Dipartimento di FisicaUniversità di Torino and INFN — Sezione di TorinoTorinoItaly
  2. 2.Centre for Research in String Theory, School of Physics and AstronomyQueen Mary University of LondonLondonU.K.

Personalised recommendations