Journal of High Energy Physics

, 2013:77 | Cite as

Reliability of Monte Carlo event generators for gamma-ray dark matter searches

  • J. A. R. Cembranos
  • A. de la Cruz-Dombriz
  • V. Gammaldi
  • R. A. Lineros
  • A. L. Maroto


We study the differences in the gamma-ray spectra simulated by four Monte Carlo event generator packages developed in particle physics. Two different versions of PYTHIA and two of HERWIG are analyzed, namely PYTHIA 6.418 and HERWIG 6.5.10 in Fortran and PYTHIA 8.165 and HERWIG 2.6.1 in C++. For all the studied channels, the intrinsic differences between them are shown to be significative and may play an important role in misunderstanding dark matter signals.


Monte Carlo Simulations 


  1. [1]
    L. Covi, J.E. Kim and L. Roszkowski, Axinos as cold dark matter, Phys. Rev. Lett. 82 (1999) 4180 [hep-ph/9905212] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J.L. Feng, A. Rajaraman and F. Takayama, Graviton cosmology in universal extra dimensions, Phys. Rev. D 68 (2003) 085018 [hep-ph/0307375] [INSPIRE].ADSGoogle Scholar
  3. [3]
    J.L. Feng, A. Rajaraman and F. Takayama, Probing gravitational interactions of elementary particles, Int. J. Mod. Phys. D 13 (2004) 2355 [hep-th/0405248] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    J.A. Cembranos, J.L. Feng, A. Rajaraman and F. Takayama, SuperWIMP solutions to small scale structure problems, Phys. Rev. Lett. 95 (2005) 181301 [hep-ph/0507150] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J.A. Cembranos, J.L. Feng and L.E. Strigari, Exotic Collider Signals from the Complete Phase Diagram of Minimal Universal Extra Dimensions, Phys. Rev. D 75 (2007) 036004 [hep-ph/0612157] [INSPIRE].ADSGoogle Scholar
  6. [6]
    J.A. Cembranos, Dark Matter from R2-gravity, Phys. Rev. Lett. 102 (2009) 141301 [arXiv:0809.1653] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J. Cembranos, The Newtonian limit at intermediate energies, Phys. Rev. D 73 (2006) 064029 [gr-qc/0507039] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    J.A. Cembranos, J.L. Diaz-Cruz and L. Prado, Impact of DM direct searches and the LHC analyses on branon phenomenology, Phys. Rev. D 84 (2011) 083522 [arXiv:1110.0542] [INSPIRE].ADSGoogle Scholar
  9. [9]
    H. Goldberg, Constraint on the Photino Mass from Cosmology, Phys. Rev. Lett. 50 (1983) 1419 [Erratum ibid. 103 (2009) 099905] [INSPIRE].
  10. [10]
    J.R. Ellis, J. Hagelin, D.V. Nanopoulos, K.A. Olive and M. Srednicki, Supersymmetric Relics from the Big Bang, Nucl. Phys. B 238 (1984) 453 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    K. Griest and M. Kamionkowski, Supersymmetric dark matter, Phys. Rept. 333 (2000) 167 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J. Cembranos, A. Dobado and A.L. Maroto, Brane world dark matter, Phys. Rev. Lett. 90 (2003) 241301 [hep-ph/0302041] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J. Cembranos, A. Dobado and A.L. Maroto, Cosmological and astrophysical limits on brane fluctuations, Phys. Rev. D 68 (2003) 103505 [hep-ph/0307062] [INSPIRE].ADSGoogle Scholar
  14. [14]
    J. Cembranos, A. Dobado and A.L. Maroto, Branon radiative corrections to collider physics and precision observables, Phys. Rev. D 73 (2006) 035008 [hep-ph/0510399] [INSPIRE].ADSGoogle Scholar
  15. [15]
    J. Cembranos, A. Dobado and A.L. Maroto, Dark matter clues in the muon anomalous magnetic moment, Phys. Rev. D 73 (2006) 057303 [hep-ph/0507066] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A.L. Maroto, The Nature of branon dark matter, Phys. Rev. D 69 (2004) 043509 [hep-ph/0310272] [INSPIRE].ADSGoogle Scholar
  17. [17]
    A.L. Maroto, Brane oscillations and the cosmic coincidence problem, Phys. Rev. D 69 (2004) 101304 [hep-ph/0402278] [INSPIRE].ADSGoogle Scholar
  18. [18]
    A. Dobado and A.L. Maroto, The Dynamics of the Goldstone bosons on the brane, Nucl. Phys. B 592 (2001) 203 [hep-ph/0007100] [INSPIRE].MathSciNetADSGoogle Scholar
  19. [19]
    J. Cembranos, A. Dobado and A.L. Maroto, Dark geometry, Int. J. Mod. Phys. D 13 (2004) 2275 [hep-ph/0405165] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Cembranos, A. de la Cruz-Dombriz, A. Dobado and A.L. Maroto, Is the CMB Cold Spot a gate to extra dimensions?, JCAP 10 (2008) 039 [arXiv:0803.0694] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Alcaraz, J. Cembranos, A. Dobado and A.L. Maroto, Limits on the brane fluctuations mass and on the brane tension scale from electron positron colliders, Phys. Rev. D 67 (2003) 075010 [hep-ph/0212269] [INSPIRE].ADSGoogle Scholar
  22. [22]
    L3 collaboration, P. Achard et al., Search for branons at LEP, Phys. Lett. B 597 (2004) 145 [hep-ex/0407017] [INSPIRE].ADSGoogle Scholar
  23. [23]
    J. Cembranos, A. Rajaraman and F. Takayama, Searching for CPT violation in tt production, Europhys. Lett. 82 (2008) 21001 [hep-ph/0609244] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J. Cembranos, A. Dobado and A.L. Maroto, Brane skyrmions and wrapped states, Phys. Rev. D 65 (2002) 026005 [hep-ph/0106322] [INSPIRE].MathSciNetADSGoogle Scholar
  25. [25]
    J. Cembranos, A. Dobado and A.L. Maroto, Some model-independent phenomenological consequences of flexible brane worlds, J. Phys. A 40 (2007) 6631 [hep-ph/0611024] [INSPIRE].MathSciNetADSGoogle Scholar
  26. [26]
    J. Cembranos, A. Dobado and A.L. Maroto, Branon search in hadronic colliders, Phys. Rev. D 70 (2004) 096001 [hep-ph/0405286] [INSPIRE].ADSGoogle Scholar
  27. [27]
    J. Cembranos, J.L. Feng, A. Rajaraman and F. Takayama, Gravitino and axino superWIMPs, AIP Conf. Proc. 903 (2007) 591 [hep-ph/0701011] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J.A. Cembranos and L.E. Strigari, Diffuse MeV Gamma-rays and Galactic 511 keV Line from Decaying WIMP Dark Matter, Phys. Rev. D 77 (2008) 123519 [arXiv:0801.0630] [INSPIRE].ADSGoogle Scholar
  29. [29]
    J.A. Cembranos, J.L. Feng and L.E. Strigari, Resolving Cosmic Gamma Ray Anomalies with Dark Matter Decaying Now, Phys. Rev. Lett. 99 (2007) 191301 [arXiv:0704.1658] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Cirelli et al., PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection, JCAP 03 (2011) 051 [Erratum ibid. 1210 (2012) E01] [arXiv:1012.4515] [INSPIRE].
  31. [31]
    J. Cembranos, V. Gammaldi and A. Maroto, Possible dark matter origin of the gamma ray emission from the galactic center observed by HESS, Phys. Rev. D 86 (2012) 103506 [arXiv:1204.0655] [INSPIRE].ADSGoogle Scholar
  32. [32]
    J. Cembranos, V. Gammaldi and A. Maroto, Spectral Study of the HESS J1745-290 Gamma-Ray Source as Dark Matter Signal, JCAP 04 (2013) 051 [arXiv:1302.6871] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J. Cembranos, A. de la Cruz-Dombriz, V. Gammaldi and A. Maroto, Detection of branon dark matter with gamma ray telescopes, Phys. Rev. D 85 (2012) 043505 [arXiv:1111.4448] [INSPIRE].ADSGoogle Scholar
  34. [34]
    J. Cembranos, A. de la Cruz-Dombriz, A. Dobado, R. Lineros and A. Maroto, Photon spectra from WIMP annihilation, Phys. Rev. D 83 (2011) 083507 [arXiv:1009.4936] [INSPIRE].ADSGoogle Scholar
  35. [35]
    J. Cembranos, A. Cruz-Dombriz, A. Dobado, R. Lineros and A. Maroto, Photon spectra from quark generation by WIMPs, AIP Conf. Proc. 1343 (2011) 595 [arXiv:1011.2137] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J. Cembranos, A. de la Cruz-Dombriz, A. Dobado, R. Lineros and A. Maroto, Fitting formulae for photon spectra from WIMP annihilation, J. Phys. Conf. Ser. 314 (2011) 012063 [arXiv:1012.4473] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. de la Cruz-Dombriz and V. Gammaldi, Dark Matter with Photons, arXiv:1109.5027 [INSPIRE].
  38. [38]
  39. [39]
    A.V. Belikov, G. Zaharijas and J. Silk, Study of the Gamma-ray Spectrum from the Galactic Center in view of Multi-TeV Dark Matter Candidates, Phys. Rev. D 86 (2012) 083516 [arXiv:1207.2412] [INSPIRE].ADSGoogle Scholar
  40. [40]
    Fermi-LAT collaboration, A. Abdo et al., Observations of Milky Way Dwarf Spheroidal galaxies with the Fermi-LAT detector and constraints on Dark Matter models, Astrophys. J. 712 (2010)147 [arXiv:1001.4531] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M. Chernyakova, D. Malyshev, F. Aharonian, R. Crocker and D. Jones, The high-energy, Arcminute-scale galactic center gamma-ray source, Astrophys. J. 726 (2011) 60 [arXiv:1009.2630] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    T. Linden, E. Lovegrove and S. Profumo, The Morphology of Hadronic Emission Models for the Gamma-Ray Source at the Galactic Center, Astrophys. J. 753 (2012) 41 [arXiv:1203.3539] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    CANGAROO-II collaboration, K. Tsuchiya et al., Detection of sub-TeV gamma-rays from the Galactic Center direction by CANGAROO-II, Astrophys. J. 606 (2004) L115 [astro-ph/0403592] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    VERITAS collaboration, K. Kosack et al., TeV gamma-ray observations of the galactic center, Astrophys. J. 608 (2004) L97 [astro-ph/0403422] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    HESS collaboration, F. Aharonian et al., Very high-energy gamma rays from the direction of Sagittarius A*, Astron. Astrophys. 425 (2004) L13 [astro-ph/0408145] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    H.E.S.S.collaboration collaboration, F. Aharonian and F. Aharonian, Spectrum and variability of the Galactic Center VHE gamma-ray source HESS J1745-290, Astron. Astrophys. 503 (2009) 817 [arXiv:0906.1247] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    J. Albert et al., Observation of gamma-rays from the galactic center with the magic telescope, Astrophys. J. 638 (2006) L101.ADSCrossRefGoogle Scholar
  48. [48]
    MAGIC collaboration, J. Aleksic et al., Searches for Dark Matter annihilation signatures in the Segue 1 satellite galaxy with the MAGIC-I telescope, JCAP 06 (2011) 035 [arXiv:1103.0477] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    WMAP collaboration, E. Komatsu et al., Seven-Year Wilkinson Microwave anisotropy probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18.ADSCrossRefGoogle Scholar
  50. [50]
    AGIS collaboration, G. Maier, The Advanced Gamma-ray Imaging System (AGIS): Simulation Studies, arXiv:0907.5118 [INSPIRE].
  51. [51]
    N. Sainz, Does Zeemans Fine Topology Exist?, arXiv:1003.3703 [INSPIRE].
  52. [52]
  53. [53]
    G.R. Blumenthal, S. Faber, R. Flores and J.R. Primack, Contraction of Dark Matter Galactic Halos Due to Baryonic Infall, Astrophys. J. 301 (1986) 27 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    O.Y. Gnedin, A.V. Kravtsov, A.A. Klypin and D. Nagai, Response of dark matter halos to condensation of baryons: Cosmological simulations and improved adiabatic contraction model, Astrophys. J. 616 (2004) 16 [astro-ph/0406247] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    F. Prada, A. Klypin, J. Flix Molina, M. Martinez and E. Simonneau, Dark Matter Annihilation in the Milky Way Galaxy: Effects of Baryonic Compression, Phys. Rev. Lett. 93 (2004) 241301 [astro-ph/0401512] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    E. Romano-Díaz, I. Shlosman, Y. Hoffman and C. Heller, Erasing dark matter cusps in cosmological galactic halos with baryons, Astrophys. J. 685 (2008) L105.ADSCrossRefGoogle Scholar
  57. [57]
    E. Romano-Diaz, I. Shlosman, C. Heller and Y. Hoffman, Dissecting Galaxy Formation: I. Comparison Between Pure Dark Matter and Baryonic Models, Astrophys. J. 702 (2009) 1250 [arXiv:0901.1317] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    A.V. Maccio’ et al., Halo expansion in cosmological hydro simulations: towards a baryonic solution of the cusp/core problem in massive spirals, arXiv:1111.5620 [INSPIRE].
  59. [59]
    P. Salucci et al., Dwarf spheroidal galaxy kinematics and spiral galaxy scaling laws, arXiv:1111.1165 [INSPIRE].
  60. [60]
    M. Baldi and P. Salucci, Constraints on interacting dark energy models from galaxy Rotation Curves, JCAP 02 (2012) 014 [arXiv:1111.3953] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    G. Castignani, N. Frusciante, D. Vernieri and P. Salucci, The density profiles of Dark Matter halos in Spiral Galaxies, Natural Sci. 4 (2012) 265 [arXiv:1201.3998] [INSPIRE].CrossRefGoogle Scholar
  62. [62]
    I. Cholis and P. Salucci, Extracting limits on Dark Matter annihilation from gamma-ray observations towards dwarf spheroidal galaxies, Phys. Rev. D 86 (2012) 023528 [arXiv:1203.2954] [INSPIRE].ADSGoogle Scholar
  63. [63]
    M.H. Seymour and M. Marx, Monte Carlo Event Generators, arXiv:1304.6677 [INSPIRE].
  64. [64]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  65. [65]
    G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    G. Marchesini and B. Webber, Simulation of QCD Jets Including Soft Gluon Interference, Nucl. Phys. B 238 (1984) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    G. Marchesini and B. Webber, Monte Carlo Simulation of General Hard Processes with Coherent QCD Radiation, Nucl. Phys. B 310 (1988) 461 [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    T. Sjöstrand and P.Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions, Eur. Phys. J. C 39 (2005) 129 [hep-ph/0408302] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    S. Catani, B.R. Webber and G. Marchesini, QCD coherent branching and semiinclusive processes at large x, Nucl. Phys. B 349 (1991) 635.ADSCrossRefGoogle Scholar
  70. [70]
    T. Sjöstrand, S. Mrenna and P. Skands, Pythia 6.4 Physic and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  72. [72]
  73. [73]
    G. Corcella et al., HERWIG 6.5: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    M. Bähr et al., Herwig++ Physics and Manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    S. Gieseke et al., HERWIG++ 2.5 Release Note, arXiv:1102.1672 [INSPIRE].
  76. [76]
    K. Arnold et al., HERWIG++ 2.6 Release Note, arXiv:1205.4902 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • J. A. R. Cembranos
    • 1
  • A. de la Cruz-Dombriz
    • 2
    • 3
  • V. Gammaldi
    • 1
  • R. A. Lineros
    • 4
  • A. L. Maroto
    • 1
  1. 1.Departamento de Física Teórica IUniversidad Complutense de MadridMadridSpain
  2. 2.Instituto de Ciencias del Espacio (ICE/CSIC) and Institut d’Estudis Espacials de Catalunya (IEEC), Campus UAB, Facultat de CiènciesBellaterra (Barcelona)Spain
  3. 3.Astrophysics, Cosmology and Gravity Centre (ACGC) and Department of Mathematics and Applied MathematicsUniversity of Cape TownCape TownSouth Africa
  4. 4.Instituto de Física Corpuscular (CSIC-Universitat de València)ValenciaSpain

Personalised recommendations