Advertisement

Journal of High Energy Physics

, 2013:64 | Cite as

Classical tau-function for quantum spin chains

  • Alexander Alexandrov
  • Vladimir Kazakov
  • Sebastien LeurentEmail author
  • Zengo Tsuboi
  • Anton Zabrodin
Open Access
Article

Abstract

For an arbitrary generalized quantum integrable spin chain we introduce a “master T -operator” which represents a generating function for commuting quantum transfer matrices constructed by means of the fusion procedure in the auxiliary space. We show that the functional relations for the transfer matrices are equivalent to an infinite set of model-independent bilinear equations of the Hirota form for the master T -operator, which allows one to identify it with τ -function of an integrable hierarchy of classical soliton equations. In this paper we consider spin chains with rational GL(N)-invariant R-matrices but the result is independent of a particular functional form of the transfer matrices and directly applies to quantum integrable models with more general (trigonometric and elliptic) R-matrices and to supersymmetric spin chains.

Keywords

Integrable Equations in Physics Lattice Integrable Models 

References

  1. [1]
    R. Hirota, Discrete analogue of a generalized Toda equation, J. Phys. Soc. Japan 50 (1981) 3785.MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    T. Miwa, On Hirotas difference equations, Proc. Japan Acad. 58 (1982) 9.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    I. Krichever, O. Lipan, P. Wiegmann and A. Zabrodin, Quantum integrable systems and elliptic solutions of classical discrete nonlinear equations, Commun. Math. Phys. 188 (1997) 267 [hep-th/9604080] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  4. [4]
    A. Zabrodin, Discrete Hirotas equation in quantum integrable models, Int. J. Mod. Phys. B11 (1997) 3125.MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    A. Zabrodin, Hirota equation and Bethe ansatz, Theor. Math. Phys. 116 (1998) 782.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A. Klumper and P. Pearce, Conformal weights of RSOS lattice models and their fusion hierarchies, Physica A 183 (1992) 304 [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    A. Kuniba, T. Nakanishi and J. Suzuki, Functional relations in solvable lattice models. 1: functional relations and representation theory, Int. J. Mod. Phys. A 9 (1994) 5215 [hep-th/9309137] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    Z. Tsuboi, Analytic Bethe ansatz and functional equations for Lie superalgebra sl(r + 1|s + 1), J. Phys. A 30 (1997) 7975 [arXiv:0911.5386] [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    Z. Tsuboi, Analytic Bethe Ansatz And Functional Equations Associated With Any Simple Root Systems Of The Lie Superalgebra sl(r + 1|s + 1), Physica A 252 (1998) 565 [arXiv:0911.5387] [INSPIRE].MathSciNetGoogle Scholar
  10. [10]
    V. Kazakov, A.S. Sorin and A. Zabrodin, Supersymmetric Bethe ansatz and Baxter equations from discrete Hirota dynamics, Nucl. Phys. B 790 (2008) 345 [hep-th/0703147] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    A. Zabrodin, Bäcklund transformations for difference Hirota equation and supersymmetric Bethe ansatz, Teor. Mat. Fyz. 155 (2008) 74 [Theor. Math. Phys. 155 (2008) 567 (English translation)] [arXiv:0705.4006] [INSPIRE].
  12. [12]
    V. Kazakov, S. Leurent and Z. Tsuboi, Baxters Q-operators and operatorial Backlund flow for quantum (super)-spin chains, Commun. Math. Phys. 311 (2012) 787 [arXiv:1010.4022] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  13. [13]
    V. Kazakov and P. Vieira, From characters to quantum (super)spin chains via fusion, JHEP 10 (2008) 050 [arXiv:0711.2470] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    P. Kulish, N.Y. Reshetikhin and E. Sklyanin, Yang-Baxter Equation and Representation Theory. 1., Lett. Math. Phys. 5 (1981) 393 [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  15. [15]
    I. Cherednik, An analogue of character formula for Hecke algebras, Funct. Anal. Appl. 21 (1987) 94 [Funct. Anal. Appl. 21 (1987) 172 (translation)].Google Scholar
  16. [16]
    V. Bazhanov and N. Reshetikhin, Restricted solid on solid models connected with simply based algebras and conformal field theory, J. Phys. A 23 (1990) 1477 [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    M. Gaudin, La fonction donde de Bethe, Masson (1983).Google Scholar
  18. [18]
    A. Tsvelik and P. Wiegmann, Exact results in the theory of magnetic alloys, Adv. Phys. 32 (1983) 453.ADSCrossRefGoogle Scholar
  19. [19]
    L. Faddeev, Algebraic aspects of Bethe Ansatz, Int. J. Mod. Phys. A 10 (1995) 1845 [hep-th/9404013] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    M. Sato, Soliton Equations as Dynamical Systems on a Infinite Dimensional Grassmann Manifolds, RIMS Kokyuroku 439 (1981) 30.Google Scholar
  21. [21]
    E. Date, M. Jimbo, M. Kashiwara and T. Miwa, Transformation groups for soliton equations, in Nonlinear integrable systems - classical and quantum, M. Jimbo and T. Miwa eds., World Scientific (1983),pg. 39-120.Google Scholar
  22. [22]
    M. Jimbo and T. Miwa, Solitons and infinite dimensional Lie algebras, Publ. RIMS, Kyoto Univ. 19 (1983) 943.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    I. Krichever, On rational solutions of the Kadomtsev-Petviashvili equation and on integrable systems of N particles on the line, Funct. Anal. Appl. 12 (1978) 76.CrossRefzbMATHGoogle Scholar
  24. [24]
    I.M. Krichever, Rational solutions of the Zakharov-Shabat equations and completely integrable systems of N particles on a line, J. Sov. Math. 21 (1983) 335.CrossRefzbMATHGoogle Scholar
  25. [25]
    B.A. Dubrovin, T.M. Malanyuk, I.M. Krichever and V.G. Makhankov, Exact solutions of a nonstationary Schrdinger equation with selfconsistent potential, Sov. J. Part. Nucl. 19 (1988) 579.MathSciNetGoogle Scholar
  26. [26]
    I. Krichever and A. Zabrodin, Spin generalization of the Ruijsenaars-Schneider model, non-abelian 2D Toda chain and representations of Sklyanin algebra, Uspekhi Math. Nauk 50 (1995) 3.MathSciNetGoogle Scholar
  27. [27]
    P. Iliev, Rational Ruijsenaars Schneider hierarchy and bispectral difference operators, Physica D Nonlinear Phenomena 229 (2007) 184 [arXiv:math-ph/0609011].MathSciNetADSCrossRefzbMATHGoogle Scholar
  28. [28]
    I. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford University Press (1995).Google Scholar
  29. [29]
    M. Sato, T. Miwa and M. Jimbo, Holonomic quantum fields I, Publ. RIMS, Kyoto Univ. 14 (1977) 223.MathSciNetCrossRefGoogle Scholar
  30. [30]
    B. Kupershmidt, KP or MKP: Noncommutative mathematics of Lagrangian, Hamiltonian, and integrable systems Mathematical Surveys and Monographs 78, American Mathematical Society, Providence, U.S.A. (2000).Google Scholar
  31. [31]
    L. Dickey, Modified KP and discrete KP, Lett. Math. Phys. 48 (1999) 277 [solv-int/9902008].MathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    T. Takebe, A note on the modified KP hierarchy and its (yet another) dispersionless limit, nlin/0111012.
  33. [33]
    T. Takebe and L.-P. Teo, Coupled modified KP hierarchy and its dispersionless limit, SIGMA 2 (2006) 072, nlin/0608039.MathSciNetGoogle Scholar
  34. [34]
    S. Kharchev, A. Marshakov, A. Mironov and A. Morozov, Generalized Kazakov-Migdal-Kontsevich model: group theory aspects, Int. J. Mod. Phys. A 10 (1995) 2015 [hep-th/9312210] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    J. Harnad and A. Y. .Orlov, Scalar products of symmetric functions and matrix integrals, Theor. Math. Phys. 137 (2003) 1676 [Teor. Mat. Fiz. 137 (2003) 375] [nlin/0211051].
  36. [36]
    J. Harnad and A.Y. Orlov, Fermionic construction of partition functions for two-matrix models and perturbative Schur function expansions, J. Phys. A 39 (2006) 8783 [math-ph/0512056] [INSPIRE].MathSciNetADSGoogle Scholar
  37. [37]
    A.Y. Orlov and T. Shiota, Schur function expansion for normal matrix model and associated discrete matrix models, Physics Letters A 343 (2005) 384 [arXiv:math-ph/0501017].MathSciNetADSGoogle Scholar
  38. [38]
    V. Enolski and J. Harnad, Schur function expansions of KP tau functions associated to algebraic curves, Russ. Math. Surveys 6 (2011), no. 4 [arXiv:1012.3152] [INSPIRE].
  39. [39]
    K. Ueno and K. Takasaki, Toda lattice hierarchy, Adv. Stu. P. M. 4 (1984) 1.MathSciNetGoogle Scholar
  40. [40]
    T. Takebe, Toda lattice hierarchy and conservation laws, Commun. Math. Phys. 129 (1990) 281 [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  41. [41]
    F. Gesztesy and W. Schweiger, Rational KP and mKP-solutions in Wronskian form, Rep. Math. Phys. 30 (1991) 205.MathSciNetADSCrossRefzbMATHGoogle Scholar
  42. [42]
    J. Nakagawa, M. Noumi, M. Shirakawa and Y. Yamada, Tableau representation for Macdonalds ninth variation of Schur functions, in proceedings of Nagoya 2000 International Workshop Nagoya University, Japan, 21-26 August 2000, A.N. Kirillov and N. Liskova eds. Physics and Combinatorics 2000, World Scientific Publishing, Singapore (2001) pg. 180.Google Scholar
  43. [43]
    A.N. Sergeev and A.P. Veselov, Jacobi-Trudy formula for generalised Schur polynomials, arXiv:0905.2557.
  44. [44]
    A. Kuniba, Y. Ohta and J. Suzuki, Quantum Jacobi-Trudi and Giambelli formulae for U q (\( B_r^{(1) } \)) from analytic Bethe ansatz, J. Phys. A 28 (1995) 6211 [hep-th/9506167] [INSPIRE].MathSciNetADSGoogle Scholar
  45. [45]
    V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory. 3. The Yang-Baxter relation, Commun. Math. Phys. 200 (1999) 297 [hep-th/9805008] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  46. [46]
    D. Talalaev, Quantization of the Gaudin system, Funct. Anal. Its Appl. 40 (2006) 73 [hep-th/0404153] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    E. Frenkel and N. Reshetikhin, The q-characters of representations of quantum affine algebras and deformations of W-algebras, math/9810055.
  48. [48]
    N. Beisert, V. Kazakov, K. Sakai and K. Zarembo, Complete spectrum of long operators in N = 4 SYM at one loop, JHEP 07 (2005) 030 [hep-th/0503200] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    N. Gromov, V. Kazakov and Z. Tsuboi, PSU (2, 2|4) Character of Quasiclassical AdS/CFT, JHEP 07 (2010) 097 [arXiv:1002.3981] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    Z. Tsuboi, Wronskian solutions of the T, Q and Y-systems related to infinite dimensional unitarizable modules of the general linear superalgebra gl(M|N), Nucl. Phys. B 870 (2013) 92 [arXiv:1109.5524] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    R.J. Baxter, Partition function of the eight vertex lattice model, Annals Phys. 70 (1972) 193 [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  52. [52]
    V.V. Bazhanov, A.N. Hibberd and S.M. Khoroshkin, Integrable structure of W(3) conformal field theory, quantum Boussinesq theory and boundary affine Toda theory, Nucl. Phys. B 622 (2002) 475 [hep-th/0105177] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    P.P. Kulish and A.M. Zeitlin, Superconformal field theory and SUSY N = 1 KDV hierarchy II: the Q-operator, Nucl. Phys. B 709 (2005) 578 [hep-th/0501019] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    T. Kojima, Baxters Q-operator for the W-algebra WN, J. Phys. A 41 (2008) 355206 [arXiv:0803.3505] [INSPIRE].MathSciNetGoogle Scholar
  55. [55]
    V.V. Bazhanov and Z. Tsuboi, Baxters Q-operators for supersymmetric spin chains, Nucl. Phys. B 805 (2008) 451 [arXiv:0805.4274] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    H. Boos, F. Gohmann, A. Klumper, K.S. Nirov and A.V. Razumov, Exercises with the universal R-matrix, J. Phys. A 43 (2010) 415208 [arXiv:1004.5342] [INSPIRE].MathSciNetGoogle Scholar
  57. [57]
    V.V. Bazhanov, R. Frassek, T. Lukowski, C. Meneghelli and M. Staudacher, Baxter Q-Operators and Representations of Yangians, Nucl. Phys. B 850 (2011) 148 [arXiv:1010.3699] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    R. Frassek, T. Lukowski, C. Meneghelli and M. Staudacher, Oscillator Construction of su(nm) Q-Operators, Nucl. Phys. B 850 (2011) 175 [arXiv:1012.6021] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  59. [59]
    M. Gaudin and V. Pasquier, The periodic Toda chain and a matrix generalization of the bessel functions recursion relations, J. Phys. A 25 (1992) 5243 [INSPIRE].MathSciNetADSGoogle Scholar
  60. [60]
    K. Hikami, The Baxter equation for quantum discrete Boussinesq equation, Nucl. Phys. B 604 (2001) 580 [nlin/0102021] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  61. [61]
    K. Fabricius and B.M. McCoy, New developments in the eight vertex model, J. Statist. Phys. 111 (2003) 323 [cond-mat/0207177] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    V.B. Kuznetsov, V.V. Mangazeev and E.K. Sklyanin, Q operator and factorized separation chain for Jacks symmetric polynomials, Indag. Math. 14 (2003) 451 [math/0306242] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    C. Korff, A Q-operator identity for the correlation functions of the infinite XXZ spin-chain, J. Phys. A 38 (2005) 6641 [hep-th/0503130] [INSPIRE].MathSciNetADSGoogle Scholar
  64. [64]
    A.G. Bytsko and J. Teschner, Quantization of models with non-compact quantum group symmetry: modular XXZ magnet and lattice sinh-Gordon model, J. Phys. A 39 (2006) 12927 [hep-th/0602093] [INSPIRE].MathSciNetGoogle Scholar
  65. [65]
    A. Belitsky, S.E. Derkachov, G. Korchemsky and A. Manashov, Baxter Q-operator for graded SL(21) spin chain, J. Stat. Mech. 0701 (2007) P01005 [hep-th/0610332] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  66. [66]
    S.E. Derkachov and A.N. Manashov, Factorization of R-matrix and Baxter Q-operators for generic sl(N) spin chains, J. Phys. A 42 (2009) 075204 [arXiv:0809.2050] [INSPIRE].MathSciNetADSGoogle Scholar
  67. [67]
    D. Chicherin, S. Derkachov, D. Karakhanyan and R. Kirschner, Baxter operators for arbitrary spin, Nucl. Phys. B 854 (2012) 393 [arXiv:1106.4991] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  68. [68]
    Z. Tsuboi, Solutions of the T -system and Baxter equations for supersymmetric spin chains, Nucl. Phys. B 826 (2010) 399 [arXiv:0906.2039] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  69. [69]
    E. Mukhin, V. Tarasov and A. Varchenko, Gaudin Hamiltonians generate the Bethe algebra of a tensor power of vector representation of gl N, St. Petersburg Math. J. 22 (2011) 463 [arXiv:0904.2131].MathSciNetCrossRefzbMATHGoogle Scholar
  70. [70]
    E. Mukhin, V. Tarasov and A. Varchenko, KZ Characteristic Variety as the Zero Set of Classical Calogero-Moser Hamiltonians, SIGMA 8 (2012) 72 [arXiv:1201.3990].MathSciNetGoogle Scholar
  71. [71]
    H. Boos, M. Jimbo, T. Miwa, F. Smirnov and Y. Takeyama, Hidden Grassmann structure in the XXZ model, Commun. Math. Phys. 272 (2007) 263 [hep-th/0606280] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  72. [72]
    H. Boos, M. Jimbo, T. Miwa, F. Smirnov and Y. Takeyama, Fermionic basis for space of operators in the XXZ model, hep-th/0702086 [INSPIRE].
  73. [73]
    H. Boos, M. Jimbo, T. Miwa, F. Smirnov and Y. Takeyama, Hidden Grassmann Structure in the XXZ Model II: Creation Operators, Commun. Math. Phys. 286 (2009) 875 [arXiv:0801.1176] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  74. [74]
    M. Jimbo, T. Miwa and F. Smirnov, Hidden Grassmann Structure in the XXZ Model III: Introducing Matsubara direction, J. Phys. A 42 (2009) 304018 [arXiv:0811.0439] [INSPIRE].MathSciNetGoogle Scholar
  75. [75]
    A.G. Izergin, Partition function of the six-vertex model in a finite volume, Soviet Phys. Dokl. 32 (1987) 878.ADSzbMATHGoogle Scholar
  76. [76]
    O. Foda, M. Wheeler and M. Zuparic, XXZ scalar products and KP, Nucl. Phys. B 820 (2009) 649 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  77. [77]
    K. Takasaki, KP and Toda tau functions in Bethe ansatz, in proceedings of Infinite Analysis 09New trends in quantum integrable systems, Kyoto University, Japan, 27-31 July 2009 B. Feigin, M. Jimbo and M. Okado eds., World Scientific (2011). arXiv:1003.3071 [INSPIRE].
  78. [78]
    N. Gromov, V. Kazakov and P. Vieira, Exact Spectrum of Anomalous Dimensions of Planar N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 103 (2009) 131601 [arXiv:0901.3753] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  79. [79]
    N. Gromov, V. Kazakov, S. Leurent and Z. Tsuboi, Wronskian Solution for AdS/CFT Y-system, JHEP 01 (2011) 155 [arXiv:1010.2720] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  80. [80]
    N. Gromov, V. Kazakov, S. Leurent and D. Volin, Solving the AdS/CFT Y-system, JHEP 07 (2012) 023 [arXiv:1110.0562] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • Alexander Alexandrov
    • 1
    • 2
  • Vladimir Kazakov
    • 3
    • 4
  • Sebastien Leurent
    • 4
    • 8
    Email author
  • Zengo Tsuboi
    • 5
    • 9
  • Anton Zabrodin
    • 2
    • 6
    • 7
  1. 1.Mathematisches Institut, Albert-Ludwigs-UniversitätFreiburgGermany
  2. 2.ITEPMoscowRussia
  3. 3.Université Paris 6ParisFrance
  4. 4.École Normale SupérieureParisFrance
  5. 5.Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin, Johann von Neumann-HausBerlinGermany
  6. 6.Institute of Biochemical PhysicsMoscowRussia
  7. 7.National Research University Higher School of EconomicsMoscowRussia
  8. 8.Institut de Mathématiques de BourgogneUniversité de BourgogneDijonFrance
  9. 9.Department of Theoretical Physics, Research School of Physics and EngineeringAustralian National UniversityCanberraAustralia

Personalised recommendations