Advertisement

Journal of High Energy Physics

, 2013:29 | Cite as

Towards an understanding of jet substructure

  • Mrinal Dasgupta
  • Alessandro Fregoso
  • Simone MarzaniEmail author
  • Gavin P. Salam
Open Access
Article

Abstract

We present first analytic, resummed calculations of the rates at which wide-spread jet substructure tools tag QCD jets. As well as considering trimming, pruning and the mass-drop tagger, we introduce modified tools with improved analytical and phenomenological behaviours. Most taggers have double logarithmic resummed structures. The modified mass-drop tagger is special in that it involves only single logarithms, and is free from a complex class of terms known as non-global logarithms. The modification of pruning brings an improved ability to discriminate between the different colour structures that characterise signal and background. As we outline in an extensive phenomenological discussion, these results provide valuable insight into the performance of existing tools and help lay robust foundations for future substructure studies.

Keywords

QCD Phenomenology Jets 

References

  1. [1]
    A. Abdesselam et al., Boosted objects: a probe of beyond the Standard Model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A. Altheimer et al., Jet substructure at the Tevatron and LHC: new results, new tools, new benchmarks, J. Phys. G 39 (2012) 063001 [arXiv:1201.0008] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    T. Plehn and M. Spannowsky, Top tagging, J. Phys. G 39 (2012) 083001 [arXiv:1112.4441] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    ATLAS collaboration, Jet mass and substructure of inclusive jets in \( \sqrt{s}=7 \) TeV pp collisions with the ATLAS experiment, JHEP 05 (2012) 128 [arXiv:1203.4606] [INSPIRE].ADSGoogle Scholar
  5. [5]
    ATLAS collaboration, ATLAS measurements of the properties of jets for boosted particle searches, Phys. Rev. D 86 (2012) 072006 [arXiv:1206.5369] [INSPIRE].ADSGoogle Scholar
  6. [6]
    ATLAS collaboration, Performance of jet substructure techniques for large-R jets in proton-proton collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, arXiv:1306.4945 [INSPIRE].
  7. [7]
    CMS collaboration, Studies of jet mass in dijet and W/Z + jet events, JHEP 05 (2013) 090 [arXiv:1303.4811] [INSPIRE].ADSGoogle Scholar
  8. [8]
    ATLAS collaboration, Search for resonances decaying into top-quark pairs using fully hadronic decays in pp collisions with ATLAS at \( \sqrt{s}=7 \) TeV, JHEP 01 (2013) 116 [arXiv:1211.2202] [INSPIRE].ADSGoogle Scholar
  9. [9]
    ATLAS collaboration, A search for \( t\overline{t} \) resonances in lepton+jets events with highly boosted top quarks collected in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 09 (2012) 041 [arXiv:1207.2409] [INSPIRE].ADSGoogle Scholar
  10. [10]
    ATLAS collaboration, Search for pair production of massive particles decaying into three quarks with the ATLAS detector in \( \sqrt{s}=7 \) TeV pp collisions at the LHC, JHEP 12 (2012) 086 [arXiv:1210.4813] [INSPIRE].ADSGoogle Scholar
  11. [11]
    ATLAS collaboration, Search for pair-produced massive coloured scalars in four-jet final states with the ATLAS detector in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 73 (2013) 2263 [arXiv:1210.4826] [INSPIRE].ADSGoogle Scholar
  12. [12]
    CMS collaboration, Search for anomalous \( t\overline{t} \) production in the highly-boosted all-hadronic final state, JHEP 09 (2012) 029 [arXiv:1204.2488] [INSPIRE].ADSGoogle Scholar
  13. [13]
    CMS collaboration, Search for resonant \( t\overline{t} \) production in lepton+jets events in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 12 (2012) 015 [arXiv:1209.4397] [INSPIRE].ADSGoogle Scholar
  14. [14]
    CMS collaboration, Search for heavy resonances in the W/Z-tagged dijet mass spectrum in pp collisions at 7 TeV, Phys. Lett. B 723 (2013) 280 [arXiv:1212.1910] [INSPIRE].ADSGoogle Scholar
  15. [15]
    G. Corcella et al., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  19. [19]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    P. Richardson and D. Winn, Investigation of Monte Carlo uncertainties on Higgs boson searches using jet substructure, Eur. Phys. J. C 72 (2012) 2178 [arXiv:1207.0380] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    M. Rubin, Non-global logarithms in filtered jet algorithms, JHEP 05 (2010) 005 [arXiv:1002.4557] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Rubin, A new LHC search channel for a light Higgs boson and associated QCD calculations, Ph.D. thesis, UPMC (University of Paris 6), Paris France (2010).Google Scholar
  23. [23]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J.R. Walsh and S. Zuberi, Factorization constraints on jet substructure, arXiv:1110.5333 [INSPIRE].
  25. [25]
    I. Feige, M.D. Schwartz, I.W. Stewart and J. Thaler, Precision jet substructure from boosted event shapes, Phys. Rev. Lett. 109 (2012) 092001 [arXiv:1204.3898] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    J. Thaler and K. Van Tilburg, Identifying boosted objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S. Catani, L. Trentadue, G. Turnock and B. Webber, Resummation of large logarithms in e + e event shape distributions, Nucl. Phys. B 407 (1993) 3 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    T. Becher and M.D. Schwartz, A precise determination of α s from LEP thrust data using effective field theory, JHEP 07 (2008) 034 [arXiv:0803.0342] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, Second-order QCD corrections to the thrust distribution, Phys. Rev. Lett. 99 (2007) 132002 [arXiv:0707.1285] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S. Weinzierl, NNLO corrections to 3-jet observables in electron-positron annihilation, Phys. Rev. Lett. 101 (2008) 162001 [arXiv:0807.3241] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Field, G. Gur-Ari, D.A. Kosower, L. Mannelli and G. Perez, Three-prong distribution of massive narrow QCD jets, Phys. Rev. D 87 (2013) 094013 [arXiv:1212.2106] [INSPIRE].ADSGoogle Scholar
  32. [32]
    A.J. Larkoski, G.P. Salam and J. Thaler, Energy correlation functions for jet substructure, JHEP 06 (2013) 108 [arXiv:1305.0007] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    E. Gerwick, S. Schumann, B. Gripaios and B. Webber, QCD jet rates with the inclusive generalized k t algorithms, JHEP 04 (2013) 089 [arXiv:1212.5235] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    P. Quiroga-Arias and S. Sapeta, A comparative study of jet substructure taggers, Int. J. Mod. Phys. A 28 (2013) 1350087 [arXiv:1209.2858] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Recombination algorithms and jet substructure: pruning as a tool for heavy particle searches, Phys. Rev. D 81 (2010) 094023 [arXiv:0912.0033] [INSPIRE].ADSGoogle Scholar
  36. [36]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Techniques for improved heavy particle searches with jet substructure, Phys. Rev. D 80 (2009) 051501 [arXiv:0903.5081] [INSPIRE].ADSGoogle Scholar
  37. [37]
    D. Krohn, J. Thaler and L.-T. Wang, Jet trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    CDF collaboration, T. Aaltonen et al., Studying the underlying event in Drell-Yan and high transverse momentum jet production at the Tevatron, Phys. Rev. D 82 (2010) 034001 [arXiv:1003.3146] [INSPIRE].ADSGoogle Scholar
  39. [39]
    Y.L. Dokshitzer, G. Leder, S. Moretti and B. Webber, Better jet clustering algorithms, JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, in Monte Carlo generators for HERA physics, Hamburg Germany (1998)–(1999), pg. 270 [hep-ph/9907280] [INSPIRE].
  41. [41]
    A. Katz, M. Son and B. Tweedie, Jet substructure and the search for neutral spin-one resonances in electroweak boson channels, JHEP 03 (2011) 011 [arXiv:1010.5253] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Dasgupta, A. Fregoso, S. Marzani and A. Powling, Jet substructure with analytical methods, arXiv:1307.0013 [INSPIRE].
  43. [43]
    M. Dasgupta, L. Magnea and G.P. Salam, Non-perturbative QCD effects in jets at hadron colliders, JHEP 02 (2008) 055 [arXiv:0712.3014] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    M. Dasgupta, K. Khelifa-Kerfa, S. Marzani and M. Spannowsky, On jet mass distributions in Z+jet and dijet processes at the LHC, JHEP 10 (2012) 126 [arXiv:1207.1640] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    B. Andersson, G. Gustafson, L. Lönnblad and U. Pettersson, Coherence effects in deep inelastic scattering, Z. Phys. C 43 (1989) 625 [INSPIRE].ADSGoogle Scholar
  46. [46]
    S. Catani, B. Webber and G. Marchesini, QCD coherent branching and semiinclusive processes at large x, Nucl. Phys. B 349 (1991) 635 [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    M. Dasgupta and G. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B 512 (2001) 323 [hep-ph/0104277] [INSPIRE].ADSGoogle Scholar
  48. [48]
    R. Appleby and M. Seymour, Nonglobal logarithms in interjet energy flow with k t clustering requirement, JHEP 12 (2002) 063 [hep-ph/0211426] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    Y. Delenda, R. Appleby, M. Dasgupta and A. Banfi, On QCD resummation with k t clustering, JHEP 12 (2006) 044 [hep-ph/0610242] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    R. Kelley, J.R. Walsh and S. Zuberi, Abelian non-global logarithms from soft gluon clustering, JHEP 09 (2012) 117 [arXiv:1202.2361] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Dasgupta and G.P. Salam, Accounting for coherence in interjet E t flow: a case study, JHEP 03 (2002) 017 [hep-ph/0203009] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    A. Banfi, G. Marchesini and G. Smye, Away from jet energy flow, JHEP 08 (2002) 006 [hep-ph/0206076] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    Y. Hatta and T. Ueda, Jet energy flow at the LHC, Phys. Rev. D 80 (2009) 074018 [arXiv:0909.0056] [INSPIRE].ADSGoogle Scholar
  55. [55]
    Y. Hatta and T. Ueda, Resummation of non-global logarithms at finite N c, Nucl. Phys. B 874 (2013) 808 [arXiv:1304.6930] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  56. [56]
    H. Weigert, Nonglobal jet evolution at finite N c, Nucl. Phys. B 685 (2004) 321 [hep-ph/0312050] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    J.R. Forshaw, A. Kyrieleis and M. Seymour, Super-leading logarithms in non-global observables in QCD, JHEP 08 (2006) 059 [hep-ph/0604094] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    Y.-T. Chien, R. Kelley, M.D. Schwartz and H.X. Zhu, Resummation of jet mass at hadron colliders, Phys. Rev. D 87 (2013) 014010 [arXiv:1208.0010] [INSPIRE].ADSGoogle Scholar
  59. [59]
    T.T. Jouttenus, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Jet mass spectra in Higgs + one jet at NNLL, arXiv:1302.0846 [INSPIRE].
  60. [60]
    S. Catani, Y.L. Dokshitzer, M. Olsson, G. Turnock and B. Webber, New clustering algorithm for multi-jet cross-sections in e + e annihilation, Phys. Lett. B 269 (1991) 432 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    S. Catani, Y.L. Dokshitzer, M. Seymour and B. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    Y.L. Dokshitzer, A. Lucenti, G. Marchesini and G. Salam, On the QCD analysis of jet broadening, JHEP 01 (1998) 011 [hep-ph/9801324] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    J.M. Campbell and R.K. Ellis, Next-to-leading order corrections to W + 2 jet and Z + 2 jet production at hadron colliders, Phys. Rev. D 65 (2002) 113007 [hep-ph/0202176] [INSPIRE].ADSGoogle Scholar
  64. [64]
    Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev. D 68 (2003) 094002 [hep-ph/0307268] [INSPIRE].ADSGoogle Scholar
  65. [65]
    G.P. Korchemsky and G.F. Sterman, Nonperturbative corrections in resummed cross-sections, Nucl. Phys. B 437 (1995) 415 [hep-ph/9411211] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    M. Dasgupta and Y. Delenda, On the universality of hadronisation corrections to QCD jets, JHEP 07 (2009) 004 [arXiv:0903.2187] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    G. Salam and D. Wicke, Hadron masses and power corrections to event shapes, JHEP 05 (2001) 061 [hep-ph/0102343] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    V. Mateu, I.W. Stewart and J. Thaler, Power corrections to event shapes with mass-dependent operators, Phys. Rev. D 87 (2013) 014025 [arXiv:1209.3781] [INSPIRE].ADSGoogle Scholar
  69. [69]
    A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    T. Sjöstrand and P.Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions, Eur. Phys. J. C 39 (2005) 129 [hep-ph/0408302] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    P.Z. Skands, Tuning Monte Carlo generators: the Perugia tunes, Phys. Rev. D 82 (2010) 074018 [arXiv:1005.3457] [INSPIRE].ADSGoogle Scholar
  72. [72]
    R. Corke and T. Sjöstrand, Interleaved parton showers and tuning prospects, JHEP 03 (2011) 032 [arXiv:1011.1759] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    G. Corcella et al., HERWIG 6.5 release note, hep-ph/0210213 [INSPIRE].
  74. [74]
    K. Arnold et al., HERWIG++ 2.6 release note, arXiv:1205.4902 [INSPIRE].
  75. [75]
    L. Lönnblad, Development strategies for PYTHIA version 7, Comput. Phys. Commun. 118 (1999) 213 [hep-ph/9810208] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    R. Field, Early LHC underlying event data — findings and surprises, arXiv:1010.3558 [INSPIRE].
  77. [77]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    S. Catani, F. Krauss, R. Kuhn and B. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    D.E. Soper and M. Spannowsky, Combining subjet algorithms to enhance ZH detection at the LHC, JHEP 08 (2010) 029 [arXiv:1005.0417] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    Y. Cui, Z. Han and M.D. Schwartz, W-jet tagging: optimizing the identification of boosted hadronically-decaying W bosons, Phys. Rev. D 83 (2011) 074023 [arXiv:1012.2077] [INSPIRE].ADSGoogle Scholar
  83. [83]
    J. Gallicchio and M.D. Schwartz, Seeing in color: jet superstructure, Phys. Rev. Lett. 105 (2010) 022001 [arXiv:1001.5027] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    A. Hook, M. Jankowiak and J.G. Wacker, Jet dipolarity: top tagging with color flow, JHEP 04 (2012) 007 [arXiv:1102.1012] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    L.G. Almeida, S.J. Lee, G. Perez, G. Sterman and I. Sung, Template overlap method for massive jets, Phys. Rev. D 82 (2010) 054034 [arXiv:1006.2035] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • Mrinal Dasgupta
    • 1
    • 2
  • Alessandro Fregoso
    • 2
  • Simone Marzani
    • 3
    Email author
  • Gavin P. Salam
    • 4
    • 5
  1. 1.Consortium for Fundamental Physics, School of Physics & AstronomyUniversity of ManchesterManchesterU.K.
  2. 2.School of Physics & AstronomyUniversity of ManchesterManchesterU.K.
  3. 3.Institute for Particle Physics PhenomenologyDurham UniversityDurhamU.K.
  4. 4.CERN, PH-THGeneva 23Switzerland
  5. 5.LPTHE, CNRS UMR 7589, UPMC Univ. Paris 6ParisFrance

Personalised recommendations