Journal of High Energy Physics

, 2013:18 | Cite as

An apologia for firewalls

  • Ahmed Almheiri
  • Donald Marolf
  • Joseph Polchinski
  • Douglas Stanford
  • James Sully
Article

Abstract

We address claimed alternatives to the black hole firewall. We show that embedding the interior Hilbert space of an old black hole into the Hilbert space of the early radiation is inconsistent, as is embedding the semi-classical interior of an AdS black hole into any dual CFT Hilbert space. We develop the use of large AdS black holes as a system to sharpen the firewall argument. We also reiterate arguments that unitary non-local theories can avoid firewalls only if the non-localities are suitably dramatic.

Keywords

Gauge-gravity correspondence Black Holes in String Theory Black Holes 

References

  1. [1]
    A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    D.N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71 (1993) 1291 [gr-qc/9305007] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  3. [3]
    D.N. Page, Black hole information, hep-th/9305040 [INSPIRE].
  4. [4]
    S. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14 (1976) 2460 [INSPIRE].MathSciNetADSGoogle Scholar
  5. [5]
    S.D. Mathur, The information paradox: a pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    S.B. Giddings, Models for unitary black hole disintegration, Phys. Rev. D 85 (2012) 044038 [arXiv:1108.2015] [INSPIRE].ADSGoogle Scholar
  7. [7]
    S.B. Giddings, Black holes, quantum information and unitary evolution, Phys. Rev. D 85 (2012) 124063 [arXiv:1201.1037] [INSPIRE].ADSGoogle Scholar
  8. [8]
    P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    S.B. Giddings and W.M. Nelson, Quantum emission from two-dimensional black holes, Phys. Rev. D 46 (1992) 2486 [hep-th/9204072] [INSPIRE].MathSciNetADSGoogle Scholar
  10. [10]
    D.N. Page, Particle emission rates from a black hole. 2. Massless particles from a rotating hole, Phys. Rev. D 14 (1976) 3260 [INSPIRE].
  11. [11]
    W.H. Zurek, Entropy evaporated by a black hole, Phys. Rev. Lett. 49 (1982) 1683 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    E. Verlinde and H. Verlinde, Black hole entanglement and quantum error correction, arXiv:1211.6913 [INSPIRE].
  13. [13]
    R.D. Sorkin, The statistical mechanics of black hole thermodynamics, gr-qc/9705006 [INSPIRE].
  14. [14]
    S.L. Braunstein, S. Pirandola and K. Życzkowski, Entangled black holes as ciphers of hidden information, Phys. Rev. Lett. 110 (2013) 101301 [arXiv:0907.1190] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S.B. Giddings and Y. Shi, Quantum information transfer and models for black hole mechanics, Phys. Rev. D 87 (2013) 064031 [arXiv:1205.4732] [INSPIRE].ADSGoogle Scholar
  16. [16]
    L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    W. Unruh and R.M. Wald, Acceleration radiation and generalized second law of thermodynamics, Phys. Rev. D 25 (1982) 942 [INSPIRE].ADSGoogle Scholar
  18. [18]
    W.G. Unruh and R. Wald, How to mine energy from a black hole, Gen. Rel. Grav. 15 (1983) 195.MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    W. Unruh and R.M. Wald, Entropy bounds, acceleration radiation, and the generalized second law, Phys. Rev. D 27 (1983) 2271 [INSPIRE].ADSGoogle Scholar
  20. [20]
    A.R. Brown, Tensile strength and the mining of black holes, arXiv:1207.3342 [INSPIRE].
  21. [21]
    R. Haag, H. Narnhofer and U. Stein, On quantum field theory in gravitational background, Commun. Math. Phys. 94 (1984) 219 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    G. ’t Hooft, On the quantum structure of a black hole, Nucl. Phys. B 256 (1985) 727 [INSPIRE].
  23. [23]
    L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A quantum source of entropy for black holes, Phys. Rev. D 34 (1986) 373 [INSPIRE].MathSciNetADSGoogle Scholar
  24. [24]
    R. Sorkin, A simple derivation of stimulated emission by black holes, Class. Quant. Grav. 4 (1987) L149 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    K. Fredenhagen and R. Haag, On the derivation of Hawking radiation associated with the formation of a black hole, Commun. Math. Phys. 127 (1990) 273 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  26. [26]
    M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  27. [27]
    T. Jacobson, Introduction to quantum fields in curved space-time and the Hawking effect, gr-qc/0308048 [INSPIRE].
  28. [28]
    S.B. Giddings, Black hole information, unitarity and nonlocality, Phys. Rev. D 74 (2006) 106005 [hep-th/0605196] [INSPIRE].MathSciNetADSGoogle Scholar
  29. [29]
    Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S.D. Mathur, Tunneling into fuzzball states, Gen. Rel. Grav. 42 (2010) 113 [arXiv:0805.3716] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  31. [31]
    C.R. Stephens, G. ’t Hooft and B.F. Whiting, Black hole evaporation without information loss, Class. Quant. Grav. 11 (1994) 621 [gr-qc/9310006] [INSPIRE].
  32. [32]
    J. Preskill, unpublished.Google Scholar
  33. [33]
    L. Susskind and L. Thorlacius, Gedanken experiments involving black holes, Phys. Rev. D 49 (1994) 966 [hep-th/9308100] [INSPIRE].MathSciNetADSGoogle Scholar
  34. [34]
    S.B. Giddings, Nonviolent nonlocality, arXiv:1211.7070 [INSPIRE].
  35. [35]
    S.B. Giddings, Nonviolent information transfer from black holes: a field theory parameterization, Phys. Rev. D 88 (2013) 024018 [arXiv:1302.2613] [INSPIRE].ADSGoogle Scholar
  36. [36]
    D.N. Page, Is black hole evaporation predictable?, Phys. Rev. Lett. 44 (1980) 301 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    L. Susskind, unpublished.Google Scholar
  38. [38]
    Y. Nomura, J. Varela and S.J. Weinberg, Black holes, information and Hilbert space for quantum gravity, Phys. Rev. D 87 (2013) 084050 [arXiv:1210.6348] [INSPIRE].ADSGoogle Scholar
  39. [39]
    S.D.H. Hsu, Macroscopic superpositions and black hole unitarity, arXiv:1302.0451 [INSPIRE].
  40. [40]
    D. Harlow and P. Hayden, Quantum computation vs. firewalls, JHEP 06 (2013) 085 [arXiv:1301.4504] [INSPIRE].
  41. [41]
    R. Bousso, Complementarity is not enough, Phys. Rev. D 87 (2013) 124023 [arXiv:1207.5192] [INSPIRE].ADSGoogle Scholar
  42. [42]
    M. Srednicki, private communication.Google Scholar
  43. [43]
    Y. Nomura, J. Varela and S.J. Weinberg, Complementarity endures: no firewall for an infalling observer, JHEP 03 (2013) 059 [arXiv:1207.6626] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    K. Papadodimas and S. Raju, An infalling observer in AdS/CFT, arXiv:1211.6767 [INSPIRE].
  45. [45]
    Y. Nomura and J. Varela, A note on (no) firewalls: the entropy argument, JHEP 07 (2013) 124 [arXiv:1211.7033] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    L. Susskind, Black hole complementarity and the Harlow-Hayden conjecture, arXiv:1301.4505 [INSPIRE].
  47. [47]
    S. Caron-Huot, private communication.Google Scholar
  48. [48]
    A. Kapustin, Is there life beyond quantum mechanics?, arXiv:1303.6917 [INSPIRE].
  49. [49]
    D. Kabat, G. Lifschytz and D.A. Lowe, Constructing local bulk observables in interacting AdS/CFT, Phys. Rev. D 83 (2011) 106009 [arXiv:1102.2910] [INSPIRE].ADSGoogle Scholar
  50. [50]
    I. Heemskerk, D. Marolf, J. Polchinski and J. Sully, Bulk and transhorizon measurements in AdS/CFT, JHEP 10 (2012) 165 [arXiv:1201.3664] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: A Holographic description of the black hole interior, Phys. Rev. D 75 (2007) 106001 [Erratum ibid. D 75 (2007) 129902] [hep-th/0612053] [INSPIRE].
  52. [52]
    R. Bousso, B. Freivogel, S. Leichenauer, V. Rosenhaus and C. Zukowski, Null geodesics, local CFT operators and AdS/CFT for subregions, arXiv:1209.4641 [INSPIRE].
  53. [53]
    T. Banks and W. Fischler, Holographic space-time does not predict firewalls, arXiv:1208.4757 [INSPIRE].
  54. [54]
    L. Susskind, Singularities, firewalls and complementarity, arXiv:1208.3445 [INSPIRE].
  55. [55]
    S.G. Avery, B.D. Chowdhury and A. Puhm, Unitarity and fuzzball complementarity:Alice fuzzes but may not even know it!’, arXiv:1210.6996 [INSPIRE].
  56. [56]
    J.M. Maldacena, Eternal black holes in Anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    S. Hossenfelder, Comment on the black hole firewall, arXiv:1210.5317 [INSPIRE].
  58. [58]
    T. Jacobson, Boundary unitarity without firewalls, arXiv:1212.6944 [INSPIRE].
  59. [59]
    E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].
  60. [60]
    M. Berkooz, A. Sever and A. Shomer, ’Double tracedeformations, boundary conditions and space-time singularities, JHEP 05 (2002) 034 [hep-th/0112264] [INSPIRE].
  61. [61]
    S.S. Gubser and I.R. Klebanov, A universal result on central charges in the presence of double trace deformations, Nucl. Phys. B 656 (2003) 23 [hep-th/0212138] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  62. [62]
    E. Witten, SL(2, \( \mathbb{Z} \)) action on three-dimensional conformal field theories with Abelian symmetry, om From fields to strings, volume 2, M. Shifman et al. eds., World Scientific, Singapore (2005), hep-th/0307041 [INSPIRE].
  63. [63]
    J.V. Rocha, Evaporation of large black holes in AdS: coupling to the evaporon, JHEP 08 (2008) 075 [arXiv:0804.0055] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  64. [64]
    J.V. Rocha, Evaporation of large black holes in AdS: Greybody factor and decay rate, JHEP 08 (2009) 027 [arXiv:0905.4373] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  65. [65]
    G. Compere and D. Marolf, Setting the boundary free in AdS/CFT, Class. Quant. Grav. 25 (2008) 195014 [arXiv:0805.1902] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  66. [66]
    O. Domenech, M. Montull, A. Pomarol, A. Salvio and P.J. Silva, Emergent gauge fields in holographic superconductors, JHEP 08 (2010) 033 [arXiv:1005.1776] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    T. Faulkner and J. Polchinski, Semi-holographic Fermi liquids, JHEP 06 (2011) 012 [arXiv:1001.5049] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  68. [68]
    T. Andrade and D. Marolf, AdS/CFT beyond the unitarity bound, JHEP 01 (2012) 049 [arXiv:1105.6337] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  69. [69]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  70. [70]
    T. Hertog and S. Hollands, Stability in designer gravity, Class. Quant. Grav. 22 (2005) 5323 [hep-th/0508181] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  71. [71]
    A.J. Amsel and D. Marolf, Energy bounds in designer gravity, Phys. Rev. D 74 (2006) 064006 [Erratum ibid. D 75 (2007) 029901] [hep-th/0605101] [INSPIRE].
  72. [72]
    A.J. Amsel, T. Hertog, S. Hollands and D. Marolf, A tale of two superpotentials: stability and instability in designer gravity, Phys. Rev. D 75 (2007) 084008 [Erratum ibid. D 77 (2008) 049903] [hep-th/0701038] [INSPIRE].
  73. [73]
    T. Faulkner, G.T. Horowitz and M.M. Roberts, New stability results for Einstein scalar gravity, Class. Quant. Grav. 27 (2010) 205007 [arXiv:1006.2387] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  74. [74]
    A.J. Amsel and M.M. Roberts, Stability in Einstein-scalar gravity with a logarithmic branch, Phys. Rev. D 85 (2012) 106011 [arXiv:1112.3964] [INSPIRE].ADSGoogle Scholar
  75. [75]
    S.G. Avery and B.D. Chowdhury, Firewalls in AdS/CFT, arXiv:1302.5428 [INSPIRE].
  76. [76]
    L. Susskind, private communication.Google Scholar
  77. [77]
    M. Hanada, Y. Hyakutake, J. Nishimura and S. Takeuchi, Higher derivative corrections to black hole thermodynamics from supersymmetric matrix quantum mechanics, Phys. Rev. Lett. 102 (2009) 191602 [arXiv:0811.3102] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    M. Hanada, Monte Carlo approach to the string/M-theory, PoS(LATTICE 2012)019 [arXiv:1212.2814] [INSPIRE].
  79. [79]
    R. Gambini and J. Pullin, Loop quantization of the Schwarzschild black hole, Phys. Rev. Lett. 110 (2013) 211301 [arXiv:1302.5265] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    D. Marolf, Black holes, AdS and CFTs, Gen. Rel. Grav. 41 (2009) 903 [arXiv:0810.4886] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  81. [81]
    D. Marolf and A.C. Wall, Eternal black holes and superselection in AdS/CFT, Class. Quant. Grav. 30 (2013) 025001 [arXiv:1210.3590] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  82. [82]
    S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  83. [83]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  84. [84]
    A. Ori, Firewall or smooth horizon?, arXiv:1208.6480 [INSPIRE].
  85. [85]
    A. Ashtekar and M. Bojowald, Black hole evaporation: a paradigm, Class. Quant. Grav. 22 (2005) 3349 [gr-qc/0504029] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  86. [86]
    W. Kim, B.-H. Lee and D.-H. Yeom, Black hole complementarity and firewall in two dimensions, JHEP 05 (2013) 060 [arXiv:1301.5138] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  87. [87]
    A. Almheiri and J. Sully, An uneventful horizon in two dimensions, arXiv:1307.8149 [INSPIRE].
  88. [88]
    A. Strominger, Five problems in quantum gravity, Nucl. Phys. Proc. Suppl. 192-193 (2009) 119 [arXiv:0906.1313] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  89. [89]
    B. Freivogel and L. Susskind, A framework for the landscape, Phys. Rev. D 70 (2004) 126007 [hep-th/0408133] [INSPIRE].MathSciNetADSGoogle Scholar
  90. [90]
    R. Bousso and L. Susskind, The multiverse interpretation of quantum mechanics, Phys. Rev. D 85 (2012) 045007 [arXiv:1105.3796] [INSPIRE].ADSGoogle Scholar
  91. [91]
    J. Polchinski, unpublished.Google Scholar
  92. [92]
    L. Susskind, The transfer of entanglement: the case for firewalls, arXiv:1210.2098 [INSPIRE].
  93. [93]
    B. Freivogel et al., Inflation in AdS/CFT, JHEP 03 (2006) 007 [hep-th/0510046] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  94. [94]
    M. Gary and S.B. Giddings, The flat space S-matrix from the AdS/CFT correspondence?, Phys. Rev. D 80 (2009) 046008 [arXiv:0904.3544] [INSPIRE].MathSciNetADSGoogle Scholar
  95. [95]
    J. Maldacena and L. Susskind, Cool horizons for entangled black holes, arXiv:1306.0533 [INSPIRE].
  96. [96]
    G. Chapline, E. Hohlfeld, R. Laughlin and D. Santiago, Quantum phase transitions and the breakdown of classical general relativity, Int. J. Mod. Phys. A 18 (2003) 3587 [gr-qc/0012094] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    P.O. Mazur and E. Mottola, Gravitational condensate stars: An alternative to black holes, gr-qc/0109035 [INSPIRE].
  98. [98]
    F. Winterberg, Gamma ray bursters and lorentzian relativity, Z. Naturforsch. 56A (2001) 889.Google Scholar
  99. [99]
    A. Davidson, Holographic shell model: stack data structure inside black holes, arXiv:1108.2650 [INSPIRE].
  100. [100]
    A. Giveon and N. Itzhaki, String theory versus black hole complementarity, JHEP 12 (2012) 094 [arXiv:1208.3930] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  101. [101]
    S.B. Giddings, Black holes and massive remnants, Phys. Rev. D 46 (1992) 1347 [hep-th/9203059] [INSPIRE].ADSGoogle Scholar
  102. [102]
    S.D. Mathur and D. Turton, Comments on black holes I: the possibility of complementarity, arXiv:1208.2005 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  • Ahmed Almheiri
    • 1
  • Donald Marolf
    • 1
  • Joseph Polchinski
    • 1
    • 2
  • Douglas Stanford
    • 1
    • 2
    • 3
  • James Sully
    • 1
  1. 1.Department of PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.
  2. 2.Kavli Institute for Theoretical PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.
  3. 3.Stanford Institute for Theoretical Physics and Department of PhysicsStanford UniversityStanfordU.S.A.

Personalised recommendations