Journal of High Energy Physics

, 2013:12 | Cite as

Unitarity and fuzzball complementarity: “Alice fuzzes but may not even know it!”

  • Steven G. Avery
  • Borun D. ChowdhuryEmail author
  • Andrea Puhm
Open Access


We investigate the recent black hole firewall argument. For a black hole in a typical state we argue that unitarity requires every quantum of radiation leaving the black hole to carry information about the initial state. An information-free horizon is thus inconsistent with unitary at every step of the evaporation process. The required horizon-scale structure is manifest in the fuzzball proposal which provides a mechanism for holding up the structure. In this context we want to address the experience of an infalling observer and discuss the recent fuzzball complementarity proposal. Unlike black hole complementarity and observer complementarity which postulate asymptotic observers experience a hot membrane while infalling ones pass freely through the horizon, fuzzball complementarity postulates that fine-grained operators experience the details of the fuzzball microstate and coarse-grained operators experience the black hole. In particular, this implies that an in-falling detector tuned to energy E ~ T H , where T H is the asymptotic Hawking temperature, does not experience free infall while one tuned to ET H does.


Black Holes in String Theory AdS-CFT Correspondence Black Holes 


  1. [1]
    G. Gibbons, Birkhoffs invariant and Thornes hoop conjecture, arXiv:0903.1580 [INSPIRE].
  2. [2]
    S. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
  3. [3]
    L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    R. Bousso, Complementarity is not enough, Phys. Rev. D 87 (2013) 124023 [arXiv:1207.5192] [INSPIRE].ADSGoogle Scholar
  6. [6]
    S.D. Mathur and D. Turton, Comments on black holes I: the possibility of complementarity, arXiv:1208.2005 [INSPIRE].
  7. [7]
    B.D. Chowdhury and A. Puhm, Is Alice burning or fuzzing?, arXiv:1208.2026 [INSPIRE].
  8. [8]
    L. Susskind, Singularities, firewalls and complementarity, arXiv:1208.3445 [INSPIRE].
  9. [9]
    T. Banks and W. Fischler, Holographic space-time does not predict firewalls, arXiv:1208.4757 [INSPIRE].
  10. [10]
    A. Ori, Firewall or smooth horizon?, arXiv:1208.6480 [INSPIRE].
  11. [11]
    L. Susskind, The transfer of entanglement: the case for firewalls, arXiv:1210.2098 [INSPIRE].
  12. [12]
    S. Hossenfelder, Comment on the black hole firewall, arXiv:1210.5317 [INSPIRE].
  13. [13]
    D.N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71 (1993) 1291 [gr-qc/9305007] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  14. [14]
    D.N. Page, Black hole information, hep-th/9305040 [INSPIRE].
  15. [15]
    S.D. Mathur, The information paradox: a pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    S.D. Mathur, The information paradox and the infall problem, Class. Quant. Grav. 28 (2011) 125010 [arXiv:1012.2101] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    S.D. Mathur and C.J. Plumberg, Correlations in Hawking radiation and the infall problem, JHEP 09 (2011) 093 [arXiv:1101.4899] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    S.D. Mathur, What the information paradox is not, arXiv:1108.0302 [INSPIRE].
  19. [19]
    S.D. Mathur, The information paradox: conflicts and resolutions, Pramana 79 (2012) 1059 [arXiv:1201.2079] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S.B. Giddings and Y. Shi, Quantum information transfer and models for black hole mechanics, Phys. Rev. D 87 (2013) 064031 [arXiv:1205.4732] [INSPIRE].ADSGoogle Scholar
  21. [21]
    S.G. Avery, Qubit models of black hole evaporation, JHEP 01 (2013) 176 [arXiv:1109.2911] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    S.L. Braunstein, S. Pirandola and K. Życzkowski, Phys. Rev. Lett. 110 (2013) 101301 [arXiv:0907.1190] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S.D. Mathur, Black holes and beyond, Annals Phys. 327 (2012) 2760 [arXiv:1205.0776] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  24. [24]
    S.D. Mathur, Black holes and holography, J. Phys. Conf. Ser. 405 (2012) 012005 [arXiv:1207.5431] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S.B. Giddings, Models for unitary black hole disintegration, Phys. Rev. D 85 (2012) 044038 [arXiv:1108.2015] [INSPIRE].ADSGoogle Scholar
  26. [26]
    S.B. Giddings, Black holes, quantum information and unitary evolution, Phys. Rev. D 85 (2012) 124063 [arXiv:1201.1037] [INSPIRE].ADSGoogle Scholar
  27. [27]
    G.T. Horowitz and J.M. Maldacena, The black hole final state, JHEP 02 (2004) 008 [hep-th/0310281] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    D.A. Lowe, J. Polchinski, L. Susskind, L. Thorlacius and J. Uglum, Black hole complementarity versus locality, Phys. Rev. D 52 (1995) 6997 [hep-th/9506138] [INSPIRE].MathSciNetADSGoogle Scholar
  29. [29]
    S.D. Mathur, What exactly is the information paradox?, Lect. Notes Phys. 769 (2009) 3 [arXiv:0803.2030] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    E. Lieb and M. Ruskai, Proof of the strong subadditivity of quantum-mechanical entropy, J. Math. Phys. 14 (1973) 1938 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    H. Araki and E. Lieb, Entropy inequalities, Commun. Math. Phys. 18 (1970) 160 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    W. Zurek, Entropy evaporated by a black hole, Phys. Rev. Lett. 49 (1982) 1683 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    B. Czech, K. Larjo and M. Rozali, Black holes as Rubiks cubes, JHEP 08 (2011) 143 [arXiv:1106.5229] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    M.A. Nielsen and I.L. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge U.K. (2000).zbMATHGoogle Scholar
  35. [35]
    S.B. Giddings and R.A. Porto, The gravitational S-matrix, Phys. Rev. D 81 (2010) 025002 [arXiv:0908.0004] [INSPIRE].ADSGoogle Scholar
  36. [36]
    P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664 [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  39. [39]
    L.I. Schiff, H. Snyder and J. Weinberg, On the existence of stationary states of the mesotron field, Phys. Rev. 57 (1940) 315 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    B.D. Chowdhury and S.D. Mathur, Pair creation in non-extremal fuzzball geometries, Class. Quant. Grav. 25 (2008) 225021 [arXiv:0806.2309] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    S.B. Giddings, Nonviolent nonlocality, arXiv:1211.7070 [INSPIRE].
  42. [42]
    S.B. Giddings, Nonviolent information transfer from black holes: a field theory parameterization, Phys. Rev. D 88 (2013) 024018 [arXiv:1302.2613] [INSPIRE].ADSGoogle Scholar
  43. [43]
    B.D. Chowdhury, Cool horizons lead to information loss, arXiv:1307.5915 [INSPIRE].
  44. [44]
    S.D. Mathur, The fuzzball proposal for black holes: an elementary review, Fortschr. Phys. 53 (2005) 793 [hep-th/0502050] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    I. Bena and N.P. Warner, One ring to rule them all. . . and in the darkness bind them?, Adv. Theor. Math. Phys. 9 (2005) 667 [hep-th/0408106] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    K. Skenderis and M. Taylor, The fuzzball proposal for black holes, Phys. Rept. 467 (2008) 117 [arXiv:0804.0552] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    V. Balasubramanian, J. de Boer, S. El-Showk and I. Messamah, Black holes as effective geometries, Class. Quant. Grav. 25 (2008) 214004 [arXiv:0811.0263] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    B.D. Chowdhury and A. Virmani, Modave lectures on fuzzballs and emission from the D1-D5 system, arXiv:1001.1444 [INSPIRE].
  49. [49]
    B.D. Chowdhury and S.D. Mathur, Radiation from the non-extremal fuzzball, Class. Quant. Grav. 25 (2008) 135005 [arXiv:0711.4817] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    S.G. Avery, B.D. Chowdhury and S.D. Mathur, Excitations in the deformed D1D5 CFT, JHEP 06 (2010) 032 [arXiv:1003.2746] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  51. [51]
    O. Lunin and S.D. Mathur, The slowly rotating near extremal D1-D5 system as ahot tube’, Nucl. Phys. B 615 (2001) 285 [hep-th/0107113] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    S. Giusto, S.D. Mathur and A. Saxena, 3-charge geometries and their CFT duals, Nucl. Phys. B 710 (2005) 425 [hep-th/0406103] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  53. [53]
    I. Bena, A. Puhm and B. Vercnocke, Non-extremal black hole microstates: fuzzballs of fire of ruzzballs of fuzz?, JHEP 12 (2012) 014 [arXiv:1208.3468] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    W.G. Unruh and R.M. Wald, What happens when an accelerating observer detects a Rindler particle, Phys. Rev. D 29 (1984) 1047 [INSPIRE].ADSGoogle Scholar
  55. [55]
    S.D. Mathur and D. Turton, The flaw in the firewall argument, arXiv:1306.5488 [INSPIRE].
  56. [56]
    Y. Takahashi and H. Umezawa, Thermo field dynamics, Int. J. Mod. Phys. B 10 (1996) 1755 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  57. [57]
    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  58. [58]
    M. Van Raamsdonk, Comments on quantum gravity and entanglement, arXiv:0907.2939 [INSPIRE].
  59. [59]
    B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, Rindler quantum gravity, Class. Quant. Grav. 29 (2012) 235025 [arXiv:1206.1323] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    J.M. Maldacena and A. Strominger, Black hole grey body factors and D-brane spectroscopy, Phys. Rev. D 55 (1997) 861 [hep-th/9609026] [INSPIRE].MathSciNetADSGoogle Scholar
  61. [61]
    S.G. Avery and B.D. Chowdhury, Firewalls in AdS/CFT, arXiv:1302.5428 [INSPIRE].
  62. [62]
    A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An apologia for firewalls, arXiv:1304.6483 [INSPIRE].
  63. [63]
    S.D. Mathur and D. Turton, private communications.Google Scholar
  64. [64]
    K. Papadodimas and S. Raju, An infalling observer in AdS/CFT, arXiv:1211.6767 [INSPIRE].
  65. [65]
    B.D. Chowdhury and S.D. Mathur, Fractional brane state in the early universe, Class. Quant. Grav. 24 (2007) 2689 [hep-th/0611330] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  66. [66]
    S. Kalyana Rama, Entropy of anisotropic universe and fractional branes, Gen. Rel. Grav. 39 (2007) 1773 [hep-th/0702202] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  67. [67]
    S. Bhowmick, S. Digal and S.K. Rama, Stabilisation of seven (toroidal) directions and expansion of the remaining three in an M theoretic early universe model, Phys. Rev. D 79 (2009) 101901 [arXiv:0810.4049] [INSPIRE].ADSGoogle Scholar
  68. [68]
    S. Bhowmick and S.K. Rama, From 10+1 to 3+1 dimensions in an early universe with mutually BPS intersecting branes, Phys. Rev. D 82 (2010) 083526 [arXiv:1007.0205] [INSPIRE].ADSGoogle Scholar
  69. [69]
    T. Jacobson, Thermodynamics of space-time: the Einstein equation of state, Phys. Rev. Lett. 75 (1995) 1260 [gr-qc/9504004] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  70. [70]
    E.P. Verlinde, On the origin of gravity and the laws of Newton, JHEP 04 (2011) 029 [arXiv:1001.0785] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  71. [71]
    C. Kiefer, Decoherence in situations involving the gravitational field, in Decoherence: theoretical, experimental, and conceptual problems, P. Blanchard, E. Joos, D. Giulini, C. Kiefer and I.-O. Stamatescu eds., Springer Berlin/Heidelberg, Lect. Notes Phys. 538 (2000) 101.Google Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  • Steven G. Avery
    • 1
  • Borun D. Chowdhury
    • 2
    Email author
  • Andrea Puhm
    • 3
  1. 1.The Institute of Mathematical SciencesChennaiIndia
  2. 2.Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Institut de Physique Théorique, CEA SaclayGif sur YvetteFrance

Personalised recommendations