Journal of High Energy Physics

, 2013:8 | Cite as

Supersymmetric hidden sectors for heterotic standard models

Article

Abstract

Within the context of the weakly coupled E8 × E8 heterotic string, we study the hidden sector of heterotic standard model compactifications to four-dimensions. Specifically, we present a class of hidden sector vector bundles — composed of the direct sum of line bundles only — that, together with an effective bulk five-brane, renders the heterotic standard model entirely N = 1 supersymmetric. Two explicit hidden sectors are constructed and analyzed in this context; one with the gauge group E7 × U(1) arising from a single line bundle and a second with an SO(12) × U(1) × U(1) gauge group constructed from the direct sum of two line bundles. Each hidden sector bundle is shown to satisfy all requisite physical constraints within a finite region of the Kähler cone. We also clarify that the first Chern class of the line bundles need not be even in our context, as has often been imposed in the model building literature.

Keywords

Superstrings and Heterotic Strings Superstring Vacua 

References

  1. [1]
    D.J. Gross, J.A. Harvey, E.J. Martinec and R. Rohm, Heterotic string theory. 1. The free heterotic string, Nucl. Phys. B 256 (1985) 253 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    D.J. Gross, J.A. Harvey, E.J. Martinec and R. Rohm, Heterotic string theory. 2. The interacting heterotic string, Nucl. Phys. B 267 (1986) 75 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    P. Hořava and E. Witten, Heterotic and type-I string dynamics from eleven-dimensions, Nucl. Phys. B 460 (1996) 506 [hep-th/9510209] [INSPIRE].ADSGoogle Scholar
  4. [4]
    P. Hořava and E. Witten, Eleven-dimensional supergravity on a manifold with boundary, Nucl. Phys. B 475 (1996) 94 [hep-th/9603142] [INSPIRE].ADSGoogle Scholar
  5. [5]
    A. Lukas, B.A. Ovrut and D. Waldram, On the four-dimensional effective action of strongly coupled heterotic string theory, Nucl. Phys. B 532 (1998) 43 [hep-th/9710208] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    A. Lukas, B.A. Ovrut and D. Waldram, The ten-dimensional effective action of strongly coupled heterotic string theory, Nucl. Phys. B 540 (1999) 230 [hep-th/9801087] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    A. Lukas, B.A. Ovrut and D. Waldram, Nonstandard embedding and five-branes in heterotic M-theory, Phys. Rev. D 59 (1999) 106005 [hep-th/9808101] [INSPIRE].MathSciNetADSGoogle Scholar
  8. [8]
    A. Lukas, B.A. Ovrut, K. Stelle and D. Waldram, Heterotic M-theory in five-dimensions, Nucl. Phys. B 552 (1999) 246 [hep-th/9806051] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    A. Lukas, B.A. Ovrut, K. Stelle and D. Waldram, The universe as a domain wall, Phys. Rev. D 59 (1999) 086001 [hep-th/9803235] [INSPIRE].MathSciNetADSGoogle Scholar
  10. [10]
    S.K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. 50 (1985) 1 [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    K. Uhlenbeck and S.-T. Yau, On the existence of hermitian-Yang-Mills connections in stable vector bundles, Commun. Pure Appl. Math. 39 (1986) S257.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    E. Witten, Strong coupling expansion of Calabi-Yau compactification, Nucl. Phys. B 471 (1996) 135 [hep-th/9602070] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    B.R. Greene, K.H. Kirklin, P.J. Miron and G.G. Ross, A superstring inspired Standard Model, Phys. Lett. B 180 (1986) 69 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    B.R. Greene, K.H. Kirklin, P.J. Miron and G.G. Ross, A three generation superstring model. 1. Compactification and discrete symmetries, Nucl. Phys. B 278 (1986) 667 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    B.R. Greene, K.H. Kirklin, P.J. Miron and G.G. Ross, A three generation superstring model. 2. Symmetry breaking and the low-energy theory, Nucl. Phys. B 292 (1987) 606 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    T. Matsuoka and D. Suematsu, Realistic models from the E 8 × \( E_8^{\prime } \) superstring theory, Prog. Theor. Phys. 76 (1986) 886 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    B.R. Greene, K. Kirklin, P. Miron and G.G. Ross, 273 Yukawa couplings for a three generation superstring model, Phys. Lett. B 192 (1987) 111 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    V. Braun, Y.-H. He, B.A. Ovrut and T. Pantev, The exact MSSM spectrum from string theory, JHEP 05 (2006) 043 [hep-th/0512177] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    V. Braun, Y.-H. He and B.A. Ovrut, Stability of the minimal heterotic Standard Model bundle, JHEP 06 (2006) 032 [hep-th/0602073] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    V. Braun, Y.-H. He and B.A. Ovrut, Yukawa couplings in heterotic Standard Models, JHEP 04 (2006) 019 [hep-th/0601204] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    J. Gray, A. Lukas and B. Ovrut, Perturbative anti-brane potentials in heterotic M-theory, Phys. Rev. D 76 (2007) 066007 [hep-th/0701025] [INSPIRE].MathSciNetADSGoogle Scholar
  22. [22]
    J. Gray, A. Lukas and B. Ovrut, Flux, gaugino condensation and anti-branes in heterotic M-theory, Phys. Rev. D 76 (2007) 126012 [arXiv:0709.2914] [INSPIRE].MathSciNetADSGoogle Scholar
  23. [23]
    V. Braun and B.A. Ovrut, Stabilizing moduli with a positive cosmological constant in heterotic M-theory, JHEP 07 (2006) 035 [hep-th/0603088] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].MathSciNetADSGoogle Scholar
  25. [25]
    F.A. Bogomolov, Holomorphic tensors and vector bundles on projective manifolds, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978) 1227.MathSciNetGoogle Scholar
  26. [26]
    M.R. Douglas, R. Reinbacher and S.-T. Yau, Branes, bundles and attractors: bogomolov and beyond, math/0604597 [INSPIRE].
  27. [27]
    B. Andreas and G. Curio, Spectral bundles and the DRY-conjecture, J. Geom. Phys. 62 (2012) 800 [arXiv:1012.3858] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  28. [28]
    B. Andreas and G. Curio, On the existence of stable bundles with prescribed Chern classes on Calabi-Yau threefolds, arXiv:1104.3435 [INSPIRE].
  29. [29]
    R. Blumenhagen, G. Honecker and T. Weigand, Loop-corrected compactifications of the heterotic string with line bundles, JHEP 06 (2005) 020 [hep-th/0504232] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    R. Blumenhagen, G. Honecker and T. Weigand, Non-Abelian brane worlds: the heterotic string story, JHEP 10 (2005) 086 [hep-th/0510049] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    R. Blumenhagen, S. Moster and T. Weigand, Heterotic GUT and Standard Model vacua from simply connected Calabi-Yau manifolds, Nucl. Phys. B 751 (2006) 186 [hep-th/0603015] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    R. Blumenhagen, S. Moster, R. Reinbacher and T. Weigand, Massless spectra of three generation U(N) heterotic string vacua, JHEP 05 (2007) 041 [hep-th/0612039] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    T. Weigand, Compactifications of the heterotic string with unitary bundles, Fortsch. Phys. 54 (2006) 963 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  34. [34]
    L.B. Anderson, J. Gray, A. Lukas and B. Ovrut, Stability walls in heterotic theories, JHEP 09 (2009) 026 [arXiv:0905.1748] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    L.B. Anderson, J. Gray and B. Ovrut, Yukawa textures from heterotic stability walls, JHEP 05 (2010) 086 [arXiv:1001.2317] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    L.B. Anderson, J. Gray, A. Lukas and E. Palti, Two hundred heterotic Standard Models on smooth Calabi-Yau threefolds, Phys. Rev. D 84 (2011) 106005 [arXiv:1106.4804] [INSPIRE].ADSGoogle Scholar
  37. [37]
    L.B. Anderson, J. Gray, A. Lukas and E. Palti, Heterotic line bundle Standard Models, JHEP 06 (2012) 113 [arXiv:1202.1757] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. [38]
    L.B. Anderson, J. Gray, A. Lukas and E. Palti, Heterotic Standard Models from smooth Calabi-Yau three-folds, PoS(CORFU2011)096 [INSPIRE].
  39. [39]
    R. Donagi, A. Lukas, B.A. Ovrut and D. Waldram, Nonperturbative vacua and particle physics in M-theory, JHEP 05 (1999) 018 [hep-th/9811168] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    R. Donagi, A. Lukas, B.A. Ovrut and D. Waldram, Holomorphic vector bundles and nonperturbative vacua in M-theory, JHEP 06 (1999) 034 [hep-th/9901009] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    R. Donagi, B.A. Ovrut, T. Pantev and D. Waldram, Standard Models from heterotic M-theory, Adv. Theor. Math. Phys. 5 (2002) 93 [hep-th/9912208] [INSPIRE].MathSciNetGoogle Scholar
  42. [42]
    R. Donagi, B.A. Ovrut, T. Pantev and R. Reinbacher, SU(4) instantons on Calabi-Yau threefolds with Z 2 × Z 2 fundamental group, JHEP 01 (2004) 022 [hep-th/0307273] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    V. Braun, B.A. Ovrut, T. Pantev and R. Reinbacher, Elliptic Calabi-Yau threefolds with Z 3 × Z 3 Wilson lines, JHEP 12 (2004) 062 [hep-th/0410055] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    R. Donagi, Y.-H. He, B.A. Ovrut and R. Reinbacher, The spectra of heterotic Standard Model vacua, JHEP 06 (2005) 070 [hep-th/0411156] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    C. Schoen, On fiber products of rational elliptic surfaces with section, Math. Z. 197 (1988) 177.MathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    B.A. Ovrut, T. Pantev and R. Reinbacher, Torus fibered Calabi-Yau threefolds with nontrivial fundamental group, JHEP 05 (2003) 040 [hep-th/0212221] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    V. Braun, M. Kreuzer, B.A. Ovrut and E. Scheidegger, Worldsheet instantons, torsion curves and non-perturbative superpotentials, Phys. Lett. B 649 (2007) 334 [hep-th/0703134] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    V. Braun, M. Kreuzer, B.A. Ovrut and E. Scheidegger, Worldsheet instantons and torsion curves, part A: direct computation, JHEP 10 (2007) 022 [hep-th/0703182] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  49. [49]
    V. Braun, M. Kreuzer, B.A. Ovrut and E. Scheidegger, Worldsheet instantons and torsion curves, part B: mirror symmetry, JHEP 10 (2007) 023 [arXiv:0704.0449] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    T.L. Gomez, S. Lukic and I. Sols, Constraining the Kähler moduli in the heterotic Standard Model, Commun. Math. Phys. 276 (2007) 1 [hep-th/0512205] [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  51. [51]
    M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Volume 1: introduction, Cambridge Monographs On Mathematical Physics, Cambridge Univ. Pr., Cambridge U.K. (1987).Google Scholar
  52. [52]
    M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Volume 2: loop amplitudes, anomalies and phenomenology, Cambridge Monographs On Mathematical Physics, Cambridge Univ. Pr., Cambridge U.K. (1987).Google Scholar
  53. [53]
    R. Blumenhagen, G. Honecker and T. Weigand, Supersymmetric (non-)Abelian bundles in the type I and SO(32) heterotic string, JHEP 08 (2005) 009 [hep-th/0507041] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    J. Distler and E. Sharpe, Heterotic compactifications with principal bundles for general groups and general levels, Adv. Theor. Math. Phys. 14 (2010) 335 [hep-th/0701244] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  55. [55]
    J. Distler and B.R. Greene, Aspects of (2, 0) string compactifications, Nucl. Phys. B 304 (1988) 1 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    D. Freed, Determinants, torsion, and strings, Commun. Math. Phys. 107 (1986) 483 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  57. [57]
    E. Witten, Global anomalies in string theory, Print-85-0620, Princeton U.S.A. (1985) [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2013

Authors and Affiliations

  1. 1.Dublin Institute for Advanced StudiesDublin 4Ireland
  2. 2.Department of MathematicsCity UniversityLondonU.K.
  3. 3.School of PhysicsNanKai UniversityTianjinP.R. China
  4. 4.Merton CollegeUniversity of OxfordOxfordU.K.
  5. 5.Department of PhysicsUniversity of PennsylvaniaPhiladelphiaU.S.A.

Personalised recommendations