Advertisement

Journal of High Energy Physics

, 2012:132 | Cite as

Parameters of heavy quark effective theory from N f = 2 lattice QCD

  • Benoît Blossier
  • Michele Della Morte
  • Patrick Fritzsch
  • Nicolas GarronEmail author
  • Jochen Heitger
  • Hubert Simma
  • Rainer Sommer
  • Nazario Tantalo
Open Access
Article

Abstract

We report on a non-perturbative determination of the parameters of the lattice Heavy Quark Effective Theory (HQET) Lagrangian and of the time component of the heavy-light axial-vector current with N f = 2 flavors of massless dynamical quarks. The effective theory is considered at the 1/m h order, and the heavy mass m h covers a range from slightly above the charm to beyond the beauty region. These HQET parameters are needed to compute, for example, the b-quark mass, the heavy-light spectrum and decay constants in the static approximation and to order 1/m h in HQET. The determination of the parameters is done non-perturbatively. The computation reported in this paper uses the plaquette gauge action and two different static actions for the heavy quark described by HQET. For the light-quark action we choose non-perturbatively O(a)-improved Wilson fermions.

Keywords

Lattice QCD B-Physics Nonperturbative Effects Heavy Quark Physics 

References

  1. [1]
    V. Niess, Global fit to CKM data, PoS(EPS-HEP2011)184 [INSPIRE].
  2. [2]
    B. Thacker and G.P. Lepage, Heavy quark bound states in lattice QCD, Phys. Rev. D 43 (1991) 196 [INSPIRE].ADSGoogle Scholar
  3. [3]
    G.P. Lepage, L. Magnea, C. Nakhleh, U. Magnea and K. Hornbostel, Improved nonrelativistic QCD for heavy quark physics, Phys. Rev. D 46 (1992) 4052 [hep-lat/9205007] [INSPIRE].ADSGoogle Scholar
  4. [4]
    A.X. El-Khadra, A.S. Kronfeld and P.B. Mackenzie, Massive fermions in lattice gauge theory, Phys. Rev. D 55 (1997) 3933 [hep-lat/9604004] [INSPIRE].ADSGoogle Scholar
  5. [5]
    M. Guagnelli, F. Palombi, R. Petronzio and N. Tantalo, f B and two scales problems in lattice QCD, Phys. Lett. B 546 (2002) 237 [hep-lat/0206023] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    S. Aoki, Y. Kuramashi and S.-I. Tominaga, Relativistic heavy quarks on the lattice, Prog. Theor. Phys. 109 (2003) 383 [hep-lat/0107009] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  7. [7]
    N.H. Christ, M. Li and H.-W. Lin, Relativistic heavy quark effective action, Phys. Rev. D 76 (2007) 074505 [hep-lat/0608006] [INSPIRE].ADSGoogle Scholar
  8. [8]
    ETM collaboration, B. Blossier et al., A proposal for B-physics on current lattices, JHEP 04 (2010) 049 [arXiv:0909.3187] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    C. Davies, Standard model heavy flavor physics on the lattice, PoS(LATTICE 2011)019 [arXiv:1203.3862] [INSPIRE].
  10. [10]
    E. Eichten, Heavy quarks on the lattice, Nucl. Phys. Proc. Suppl. 4 (1988) 170 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    E. Eichten and B.R. Hill, An effective field theory for the calculation of matrix elements involving heavy quarks, Phys. Lett. B 234 (1990) 511 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    ALPHA collaboration, J. Heitger and R. Sommer, Nonperturbative heavy quark effective theory, JHEP 02 (2004) 022 [hep-lat/0310035] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Della Morte, N. Garron, M. Papinutto and R. Sommer, Heavy quark effective theory computation of the mass of the bottom quark, JHEP 01 (2007) 007 [hep-ph/0609294] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    B. Blossier, M. della Morte, N. Garron and R. Sommer, HQET at order 1/m: I. Non-perturbative parameters in the quenched approximation, JHEP 06 (2010) 002 [arXiv:1001.4783] [INSPIRE].
  15. [15]
    B. Blossier, M. della Morte, N. Garron and R. Sommer, HQET at order 1/m: I. Non-perturbative parameters in the quenched approximation, JHEP 06 (2010) 002 [arXiv:1001.4783] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    Alpha collaboration, B. Blossier et al., HQET at order 1/m: II. Spectroscopy in the quenched approximation, JHEP 05 (2010) 074 [arXiv:1004.2661] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    ALPHA collaboration, B. Blossier et al., HQET at order 1/m: III. Decay constants in the quenched approximation, JHEP 12 (2010) 039 [arXiv:1006.5816] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    R. Sommer, Introduction to non-perturbative heavy quark effective theory, arXiv:1008.0710 [INSPIRE].
  19. [19]
    B. Blossier et al., M b and f B from non-perturbatively renormalized HQET with N f = 2 light quarks, PoS(LATTICE 2011)280 [arXiv:1112.6175] [INSPIRE].
  20. [20]
    ALPHA collaboration, K. Jansen and R. Sommer, O(α) improvement of lattice QCD with two flavors of Wilson quarks, Nucl. Phys. B 530 (1998) 185 [Erratum ibid. B 643 (2002) 517] [hep-lat/9803017] [INSPIRE].
  21. [21]
    ALPHA collaboration, J. Heitger and J. Wennekers, Effective heavy light meson energies in small volume quenched QCD, JHEP 02 (2004) 064 [hep-lat/0312016] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    ALPHA collaboration, M. Kurth and R. Sommer, Heavy quark effective theory at one loop order: an explicit example, Nucl. Phys. B 623 (2002) 271 [hep-lat/0108018] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Della Morte, A. Shindler and R. Sommer, On lattice actions for static quarks, JHEP 08 (2005) 051 [hep-lat/0506008] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    A. Grimbach, D. Guazzini, F. Knechtli and F. Palombi, O(a) improvement of the HYP static axial and vector currents at one-loop order of perturbation theory, JHEP 03 (2008) 039 [arXiv:0802.0862] [INSPIRE].Google Scholar
  25. [25]
    ALPHA collaboration, B. Blossier et al., B meson spectrum and decay constant from N f = 2 simulations, PoS(LATTICE 2010)308 [arXiv:1012.1357] [INSPIRE].
  26. [26]
    S. Bekavac et al., Matching QCD and HQET heavy-light currents at three loops, Nucl. Phys. B 833 (2010) 46 [arXiv:0911.3356] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    ALPHA collaboration, N. Garron, B-meson physics from non-perturbative lattice heavy quark effective theory, PoS(ICHEP 2010)201 [arXiv:1102.0090] [INSPIRE].
  28. [28]
    M. Lüscher, R. Narayanan, P. Weisz and U. Wolff, The Schrödinger functional: a renormalizable probe for non-Abelian gauge theories, Nucl. Phys. B 384 (1992) 168 [hep-lat/9207009] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Sint, On the Schrödinger functional in QCD, Nucl. Phys. B 421 (1994) 135 [hep-lat/9312079] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M. Lüscher, R. Sommer, P. Weisz and U. Wolff, A precise determination of the running coupling in the SU(3) Yang-Mills theory, Nucl. Phys. B 413 (1994) 481 [hep-lat/9309005] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    ALPHA collaboration, M. Della Morte et al., Computation of the strong coupling in QCD with two dynamical flavors, Nucl. Phys. B 713 (2005) 378 [hep-lat/0411025] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    M. Marinkovic, S. Schaefer, R. Sommer and F. Virotta, Strange quark mass and Λ parameter by the ALPHA collaboration, PoS(LATTICE 2011)232 [arXiv:1112.4163] [INSPIRE].
  33. [33]
    M. Lüscher and P. Weisz, O(a) improvement of the axial current in lattice QCD to one loop order of perturbation theory, Nucl. Phys. B 479 (1996) 429 [hep-lat/9606016] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Della Morte, R. Hoffmann and R. Sommer, Non-perturbative improvement of the axial current for dynamical Wilson fermions, JHEP 03 (2005) 029 [hep-lat/0503003] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    P. Fritzsch, J. Heitger and N. Tantalo, Non-perturbative improvement of quark mass renormalization in two-flavour lattice QCD, JHEP 08 (2010) 074 [arXiv:1004.3978] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M. Della Morte, R. Sommer and S. Takeda, On cutoff effects in lattice QCD from short to long distances, Phys. Lett. B 672 (2009) 407 [arXiv:0807.1120] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    ALPHA collaboration, M. Della Morte et al., Non-perturbative quark mass renormalization in two-flavor QCD, Nucl. Phys. B 729 (2005) 117 [hep-lat/0507035] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    ALPHA collaboration, A. Bode, P. Weisz and U. Wolff, Two loop computation of the Schrödinger functional in lattice QCD, Nucl. Phys. B 576 (2000) 517 [Erratum ibid. B 600 (2001) 453] [Erratum ibid. B 608 (2001) 481] [hep-lat/9911018] [INSPIRE].
  39. [39]
    ALPHA collaboration, M. Della Morte et al., Scaling test of two-flavor O(a)-improved lattice QCD, JHEP 07 (2008) 037 [arXiv:0804.3383] [INSPIRE].
  40. [40]
    H.B. Meyer et al., Exploring the HMC trajectory-length dependence of autocorrelation times in lattice QCD, Comput. Phys. Commun. 176 (2007) 91 [hep-lat/0606004] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    J. Sexton and D. Weingarten, Hamiltonian evolution for the hybrid Monte Carlo algorithm, Nucl. Phys. B 380 (1992) 665 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Hasenbusch, Speeding up the hybrid Monte Carlo algorithm for dynamical fermions, Phys. Lett. B 519 (2001) 177 [hep-lat/0107019] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2012

Authors and Affiliations

  • Benoît Blossier
    • 1
  • Michele Della Morte
    • 2
  • Patrick Fritzsch
    • 3
  • Nicolas Garron
    • 4
    Email author
  • Jochen Heitger
    • 5
  • Hubert Simma
    • 6
  • Rainer Sommer
    • 6
  • Nazario Tantalo
    • 7
    • 8
  1. 1.LPT, CNRS et Université Paris-Sud XIOrsay CedexFrance
  2. 2.Universität Mainz, Institut für KernphysikMainzGermany
  3. 3.Institut für PhysikHumboldt Universität zu BerlinBerlinGermany
  4. 4.School of Physics and AstronomyUniversity of EdinburghEdinburghU.K.
  5. 5.Universität Münster, Institut für Theoretische PhysikMünsterGermany
  6. 6.NIC, DESYZeuthenGermany
  7. 7.Dip. di FisicaUniversità di Roma ‘Tor Vergata’RomeItaly
  8. 8.INFN, Sez. di Roma ‘Tor Vergata’RomeItaly

Personalised recommendations