We report on a non-perturbative determination of the parameters of the lattice Heavy Quark Effective Theory (HQET) Lagrangian and of the time component of the heavy-light axial-vector current with Nf = 2 flavors of massless dynamical quarks. The effective theory is considered at the 1/mh order, and the heavy mass mh covers a range from slightly above the charm to beyond the beauty region. These HQET parameters are needed to compute, for example, the b-quark mass, the heavy-light spectrum and decay constants in the static approximation and to order 1/mh in HQET. The determination of the parameters is done non-perturbatively. The computation reported in this paper uses the plaquette gauge action and two different static actions for the heavy quark described by HQET. For the light-quark action we choose non-perturbatively O(a)-improved Wilson fermions.
B. Thacker and G.P. Lepage, Heavy quark bound statesin lattice QCD, Phys. Rev. D 43 (1991) 196 [INSPIRE].ADSGoogle Scholar
[3]
G.P. Lepage, L. Magnea, C. Nakhleh, U. Magnea and K. Hornbostel, Improved nonrelativistic QCD forheavy quark physics, Phys. Rev. D 46 (1992) 4052 [hep-lat/9205007] [INSPIRE].ADSGoogle Scholar
[4]
A.X. El-Khadra, A.S. Kronfeld and P.B. Mackenzie, Massive fermions in latticegauge theory, Phys. Rev. D 55 (1997) 3933 [hep-lat/9604004] [INSPIRE].ADSGoogle Scholar
E. Eichten and B.R. Hill, An effective field theoryfor the calculation ofmatrix elements involving heavyquarks, Phys. Lett. B 234 (1990) 511 [INSPIRE].ADSCrossRefGoogle Scholar
M. Della Morte, N. Garron, M. Papinutto and R. Sommer, Heavy quark effective theorycomputation of the massof the bottom quark, JHEP01 (2007) 007 [hep-ph/0609294] [INSPIRE].ADSCrossRefGoogle Scholar
[14]
B. Blossier, M. della Morte, N. Garron and R. Sommer, HQET at order 1/m: I. Non-perturbative parameters in thequenched approximation, JHEP06 (2010) 002 [arXiv:1001.4783] [INSPIRE].
[15]
B. Blossier, M. della Morte, N. Garron and R. Sommer, HQET at order 1/m: I. Non-perturbative parameters in thequenched approximation, JHEP06 (2010) 002 [arXiv:1001.4783] [INSPIRE].ADSCrossRefGoogle Scholar
ALPHA collaboration, K. Jansen and R. Sommer, O(α) improvement of lattice QCDwith two flavors ofWilson quarks, Nucl. Phys. B 530 (1998) 185 [Erratum ibid. B 643 (2002) 517] [hep-lat/9803017] [INSPIRE].
ALPHA collaboration, M. Kurth and R. Sommer, Heavy quark effective theoryat one loop order: an explicit example, Nucl. Phys. B 623 (2002) 271 [hep-lat/0108018] [INSPIRE].ADSCrossRefGoogle Scholar
A. Grimbach, D. Guazzini, F. Knechtli and F. Palombi, O(a) improvement of the HYPstatic axial and vectorcurrents at one-loop order of perturbationtheory, JHEP03 (2008) 039 [arXiv:0802.0862] [INSPIRE].Google Scholar
M. Lüscher, R. Narayanan, P. Weisz and U. Wolff, The Schrödinger functional: a renormalizable probe fornon-Abelian gauge theories, Nucl. Phys. B 384 (1992) 168 [hep-lat/9207009] [INSPIRE].ADSCrossRefGoogle Scholar
M. Lüscher, R. Sommer, P. Weisz and U. Wolff, A precise determination ofthe running coupling inthe SU(3) Yang-Mills theory, Nucl. Phys. B 413 (1994) 481 [hep-lat/9309005] [INSPIRE].ADSCrossRefGoogle Scholar
[31]
ALPHA collaboration, M. Della Morte et al., Computation of the strongcoupling in QCD withtwo dynamical flavors, Nucl. Phys. B 713 (2005) 378 [hep-lat/0411025] [INSPIRE].ADSCrossRefGoogle Scholar
M. Lüscher and P. Weisz, O(a) improvement of the axialcurrent in lattice QCDto one loop orderof perturbation theory, Nucl. Phys. B 479 (1996) 429 [hep-lat/9606016] [INSPIRE].ADSCrossRefGoogle Scholar
[34]
M. Della Morte, R. Hoffmann and R. Sommer, Non-perturbative improvement of theaxial current for dynamicalWilson fermions, JHEP03 (2005) 029 [hep-lat/0503003] [INSPIRE].ADSCrossRefGoogle Scholar
[35]
P. Fritzsch, J. Heitger and N. Tantalo, Non-perturbative improvement of quarkmass renormalization in two-flavour lattice QCD, JHEP08 (2010) 074 [arXiv:1004.3978] [INSPIRE].ADSCrossRefGoogle Scholar
ALPHA collaboration, M. Della Morte et al., Non-perturbative quark mass renormalizationin two-flavor QCD, Nucl. Phys. B 729 (2005) 117 [hep-lat/0507035] [INSPIRE].ADSCrossRefGoogle Scholar
[38]
ALPHA collaboration, A. Bode, P. Weisz and U. Wolff, Two loop computation ofthe Schrödinger functional inlattice QCD, Nucl. Phys. B 576 (2000) 517 [Erratum ibid. B 600 (2001) 453] [Erratum ibid. B 608 (2001) 481] [hep-lat/9911018] [INSPIRE].
[39]
ALPHA collaboration, M. Della Morte et al., Scaling test of two-flavor O(a)-improved lattice QCD, JHEP07 (2008) 037 [arXiv:0804.3383] [INSPIRE].
[40]
H.B. Meyer et al., Exploring the HMC trajectory-length dependence of autocorrelationtimes in lattice QCD, Comput. Phys. Commun. 176 (2007) 91 [hep-lat/0606004] [INSPIRE].ADSCrossRefGoogle Scholar
[41]
J. Sexton and D. Weingarten, Hamiltonian evolution for thehybrid Monte Carlo algorithm, Nucl. Phys. B 380 (1992) 665 [INSPIRE].ADSCrossRefGoogle Scholar