Advertisement

Journal of High Energy Physics

, 2012:128 | Cite as

Maximal CP violation in lepton mixing from a model with Δ(27) flavour symmetry

  • P. M. Ferreira
  • W. GrimusEmail author
  • L. Lavoura
  • P. O. Ludl
Article

Abstract

We propose a simple mechanism which enforces \(\left| {{U_{\mu j}}} \right| = \left| {{U_{\tau j}}} \right|\forall j = 1,2,3\) in the lepton mixing matrix U. This implies maximal atmospheric neutrino mixing and a maximal CP-violating phase but does not constrain the reactor mixing angle θ 13. We implement the proposed mechanism in two renormalizable seesaw models which have features strongly resembling those of models based on a flavour symmetry group Δ(27). Among the predictions of the models, there is a determination, although ambiguous, of the absolute neutrino mass scale, and a stringent correlation between the absolute neutrino mass scale and the effective Majorana mass in neutrinoless double-beta decay.

Keywords

Discrete and Finite Symmetries Beyond Standard Model Neutrino Physics 

References

  1. [1]
    DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    DAYA-BAY collaboration, F.P. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    RENO collaboration, J.K. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, Evidence of θ 13 > 0 from global neutrino data analysis, Phys. Rev. D 84 (2011) 053007 [arXiv:1106.6028] [INSPIRE].ADSGoogle Scholar
  5. [5]
    T. Schwetz, M. Tórtola and J.W.F. Valle, Where we are on θ 13 : addendum toGlobal neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters’, New J. Phys. 13 (2011) 109401 [arXiv:1108.1376] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    D.V. Forero, M. Tórtola and J.W.F. Valle, Global status of neutrino oscillation parameters after Neutrino-2012, arXiv:1205.4018 [INSPIRE].
  7. [7]
    G.L. Fogli et al., Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].ADSGoogle Scholar
  8. [8]
    T. Fukuyama and H. Nishiura, Mass matrix of Majorana neutrinos, hep-ph/9702253 [INSPIRE].
  9. [9]
    R.N. Mohapatra and S. Nussinov, Bimaximal neutrino mixing and neutrino mass matrix, Phys. Rev. D 60 (1999) 013002 [hep-ph/9809415] [INSPIRE].ADSGoogle Scholar
  10. [10]
    E. Ma and M. Raidal, Neutrino mass, muon anomalous magnetic moment and lepton flavor nonconservation, Phys. Rev. Lett. 87 (2001) 011802 [Erratum ibid. 87 (2001) 159901] [hep-ph/0102255] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    C.S. Lam, A 2-3 symmetry in neutrino oscillations, Phys. Lett. B 507 (2001) 214 [hep-ph/0104116] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    K.R.S. Balaji, W. Grimus and T. Schwetz, The solar LMA neutrino oscillation solution in the Zee model, Phys. Lett. B 508 (2001) 301 [hep-ph/0104035] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    E. Ma, The all-purpose neutrino mass matrix, Phys. Rev. D 66 (2002) 117301 [hep-ph/0207352] [INSPIRE].ADSGoogle Scholar
  14. [14]
    A. Ghosal, A neutrino mass model with reflection symmetry, Mod. Phys. Lett. A 19 (2004) 2579 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    P.F. Harrison and W.G. Scott, μ-τ reflection symmetry in lepton mixing and neutrino oscillations, Phys. Lett. B 547 (2002) 219 [hep-ph/0210197] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    W. Grimus and L. Lavoura, A non-standard CP transformation leading to maximal atmospheric neutrino mixing, Phys. Lett. B 579 (2004) 113 [hep-ph/0305309] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  19. [19]
    E. Ma and G. Rajasekaran, Softly broken A 4 symmetry for nearly degenerate neutrino masses, Phys. Rev. D 64 (2001) 113012 [hep-ph/0106291] [INSPIRE].ADSGoogle Scholar
  20. [20]
    G. Altarelli and F. Feruglio, Discrete flavor symmetries and models of neutrino mixing, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A.Y. Smirnov, Discrete symmetries and models of flavor mixing, J. Phys. Conf. Ser. 335 (2011) 012006 [arXiv:1103.3461] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    P. Minkowski, μeγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, in Proceedings of the Workshop on the Baryon Number of the Universe and Unified Theories, Tsukuba Japan (1979), O. Sawada and A. Sugamoto eds., KEK Report 79-18-95 [INSPIRE].
  24. [24]
    S.L. Glashow, The future of elementary particle physics, in Quarks and leptons. Proceedings of the Advanced Study Institute, Cargèse France (1979), J.-L. Basdevant et al. eds., Plenum Press, New York U.S.A. (1981).Google Scholar
  25. [25]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, D.Z. Freedman and F. van Nieuwenhuizen eds., North Holland, Amsterdam Netherlands (1979) [INSPIRE].Google Scholar
  26. [26]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J.A. Escobar and C. Luhn, The flavor group Δ(6n 2), J. Math. Phys. 50 (2009) 013524 [arXiv:0809.0639] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    E. Ma, Neutrino mass matrix from Δ(27) symmetry, Mod. Phys. Lett. A 21 (2006) 1917 [hep-ph/0607056] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    E. Ma, Near tribimaximal neutrino mixing with Δ(27) symmetry, Phys. Lett. B 660 (2008) 505 [arXiv:0709.0507] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    G.C. Branco, J.M. Gérard and W. Grimus, Geometrical T-violation, Phys. Lett. B 136 (1984) 383 [INSPIRE].ADSGoogle Scholar
  31. [31]
    H. Georgi and D.V. Nanopoulos, Suppression of flavor changing effects from neutral spinless meson exchange in gauge theories, Phys. Lett. B 82 (1979) 95 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    W. Grimus, L. Lavoura and B. Radovčić, Type II seesaw mechanism for Higgs doublets and the scale of new physics, Phys. Lett. B 674 (2009) 117 [arXiv:0902.2325] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  34. [34]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].ADSGoogle Scholar
  36. [36]
    W. Konetschny and W. Kummer, Nonconservation of total lepton number with scalar bosons, Phys. Lett. B 70 (1977) 433 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    T.P. Cheng and L.-F. Li, Neutrino masses, mixings and oscillations in SU(2) × U(1) models of electroweak interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].ADSGoogle Scholar
  38. [38]
    G.B. Gelmini and M. Roncadelli, Left-handed neutrino mass scale and spontaneously broken lepton number, Phys. Lett. B 99 (1981) 411 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J.A. Nelder and R. Mead, A simplex method for function minimization, Comput. J. 7 (1965) 308.zbMATHCrossRefGoogle Scholar
  40. [40]
    F.T. Avignone, Strategies for next generation neutrinoless double-beta decay experiments, Nucl. Phys. Proc. Suppl. 143 (2005) 233 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Faessler, A. Meroni, S.T. Petcov, F. Šimkovic and J. Vergados, Uncovering multiple CP-nonconserving mechanisms of (ββ) decay, Phys. Rev. D 83 (2011) 113003 [arXiv:1103.2434] [INSPIRE].ADSGoogle Scholar
  42. [42]
    W. Grimus and L. Lavoura, A three-parameter neutrino mass matrix with maximal CP violation, Phys. Lett. B 671 (2009) 456 [arXiv:0810.4516] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    W. Grimus and L. Lavoura, Tri-bimaximal lepton mixing from symmetry only, JHEP 04 (2009) 013 [arXiv:0811.4766] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    W. Grimus and H. Neufeld, On spontaneous CP-violation in the lepton sector, Phys. Lett. B 237 (1990) 521 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    H.E. Haber, G.L. Kane and T. Sterling, The fermion mass scale and possible effects of Higgs bosons on experimental observables, Nucl. Phys. B 161 (1979) 493 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    W. Grimus and L. Lavoura, A model realizing the Harrison-Perkins-Scott lepton mixing matrix, JHEP 01 (2006) 018 [hep-ph/0509239] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    W. Grimus and L. Lavoura, A three-parameter model for the neutrino mass matrix, J. Phys. G 34 (2007) 1757 [hep-ph/0611149] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    R.A. Porto and A. Zee, The private Higgs, Phys. Lett. B 666 (2008) 491 [arXiv:0712.0448] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    Y. BenTov and A. Zee, Lepton private Higgs and the discrete group Σ(81), arXiv:1202.4234 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  • P. M. Ferreira
    • 1
    • 2
  • W. Grimus
    • 3
    Email author
  • L. Lavoura
    • 4
  • P. O. Ludl
    • 3
  1. 1.Department of PhysicsInstituto Superior de Engenharia de LisboaLisbonPortugal
  2. 2.Centre for Theoretical and Computational PhysicsUniversity of LisbonLisbonPortugal
  3. 3.Faculty of PhysicsUniversity of ViennaViennaAustria
  4. 4.CFTP, Instituto Superior TécnicoTechnical University of LisbonLisbonPortugal

Personalised recommendations