Journal of High Energy Physics

, 2012:106 | Cite as

Construction of bulk fields with gauge redundancy

  • Idse Heemskerk


We extend the construction of field operators in AdS as smeared single trace operators in the boundary CFT to gauge fields and gravity. Bulk field operators in a fixed gauge can be thought of as non-local gauge invariant observables. Non-local commutators result from the Gauss law constraint, which for gravity implies a perturbative notion of holography. We work out these commutators in a generalized Coulomb gauge and obtain leading order smearing functions in radial gauge.


Gauge-gravity correspondence AdS-CFT Correspondence Gauge Symmetry 


  1. [1]
    T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016 [INSPIRE].
  2. [2]
    I. Bena, On the construction of local fields in the bulk of AdS 5 and other spaces, Phys. Rev. D 62 (2000) 066007 [hep-th/9905186] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    D. Kabat, G. Lifschytz and D.A. Lowe, Constructing local bulk observables in interacting AdS/CFT, Phys. Rev. D 83 (2011) 106009 [arXiv:1102.2910] [INSPIRE].ADSGoogle Scholar
  4. [4]
    I. Heemskerk, D. Marolf and J. Polchinski, Bulk and transhorizon measurements in AdS/CFT, arXiv:1201.3664 [INSPIRE].
  5. [5]
    M. Gary, S.B. Giddings and J. Penedones, Local bulk S-matrix elements and CFT singularities, Phys. Rev. D 80 (2009) 085005 [arXiv:0903.4437] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    I. Heemskerk and J. Polchinski, Holographic and wilsonian renormalization groups, JHEP 06 (2011)031 [arXiv:1010.1264] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    S.H. Nguyen and V. Pervushin, Gauge invariant quantization of abelian and nonabelian theories, Fortsch. Phys. 37 (1989) 611 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J.D. Bjorken and S.D. Drell, Relativistic quantum fields, McGraw-Hill, U.S.A. (1965).zbMATHGoogle Scholar
  10. [10]
    J. Polchinski, Introduction to gauge/gravity duality, arXiv:1010.6134 [INSPIRE].
  11. [11]
    H. Liu and A.A. Tseytlin, D = 4 super Yang-Mills, D = 5 gauged supergravity and D = 4 conformal supergravity, Nucl. Phys. B 533 (1998) 88 [hep-th/9804083] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    G. Compere and D. Marolf, Setting the boundary free in AdS/CFT, Class. Quant. Grav. 25 (2008)195014 [arXiv:0805.1902] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  14. [14]
    D. Marolf, Unitarity and holography in gravitational physics, Phys. Rev. D 79 (2009) 044010 [arXiv:0808.2842] [INSPIRE].MathSciNetADSGoogle Scholar
  15. [15]
    D. Marolf, Holographic thought experiments, Phys. Rev. D 79 (2009) 024029 [arXiv:0808.2845] [INSPIRE].MathSciNetADSGoogle Scholar
  16. [16]
    A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: a boundary view of horizons and locality, Phys. Rev. D 73 (2006) 086003 [hep-th/0506118] [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Holographic representation of local bulk operators, Phys. Rev. D 74 (2006) 066009 [hep-th/0606141] [INSPIRE].MathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.

Personalised recommendations