Advertisement

Journal of High Energy Physics

, 2012:106 | Cite as

Construction of bulk fields with gauge redundancy

  • Idse Heemskerk
Article

Abstract

We extend the construction of field operators in AdS as smeared single trace operators in the boundary CFT to gauge fields and gravity. Bulk field operators in a fixed gauge can be thought of as non-local gauge invariant observables. Non-local commutators result from the Gauss law constraint, which for gravity implies a perturbative notion of holography. We work out these commutators in a generalized Coulomb gauge and obtain leading order smearing functions in radial gauge.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence Gauge Symmetry 

References

  1. [1]
    T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016 [INSPIRE].
  2. [2]
    I. Bena, On the construction of local fields in the bulk of AdS 5 and other spaces, Phys. Rev. D 62 (2000) 066007 [hep-th/9905186] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    D. Kabat, G. Lifschytz and D.A. Lowe, Constructing local bulk observables in interacting AdS/CFT, Phys. Rev. D 83 (2011) 106009 [arXiv:1102.2910] [INSPIRE].ADSGoogle Scholar
  4. [4]
    I. Heemskerk, D. Marolf and J. Polchinski, Bulk and transhorizon measurements in AdS/CFT, arXiv:1201.3664 [INSPIRE].
  5. [5]
    M. Gary, S.B. Giddings and J. Penedones, Local bulk S-matrix elements and CFT singularities, Phys. Rev. D 80 (2009) 085005 [arXiv:0903.4437] [INSPIRE].MathSciNetADSGoogle Scholar
  6. [6]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    I. Heemskerk and J. Polchinski, Holographic and wilsonian renormalization groups, JHEP 06 (2011)031 [arXiv:1010.1264] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    S.H. Nguyen and V. Pervushin, Gauge invariant quantization of abelian and nonabelian theories, Fortsch. Phys. 37 (1989) 611 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    J.D. Bjorken and S.D. Drell, Relativistic quantum fields, McGraw-Hill, U.S.A. (1965).zbMATHGoogle Scholar
  10. [10]
    J. Polchinski, Introduction to gauge/gravity duality, arXiv:1010.6134 [INSPIRE].
  11. [11]
    H. Liu and A.A. Tseytlin, D = 4 super Yang-Mills, D = 5 gauged supergravity and D = 4 conformal supergravity, Nucl. Phys. B 533 (1998) 88 [hep-th/9804083] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    G. Compere and D. Marolf, Setting the boundary free in AdS/CFT, Class. Quant. Grav. 25 (2008)195014 [arXiv:0805.1902] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  14. [14]
    D. Marolf, Unitarity and holography in gravitational physics, Phys. Rev. D 79 (2009) 044010 [arXiv:0808.2842] [INSPIRE].MathSciNetADSGoogle Scholar
  15. [15]
    D. Marolf, Holographic thought experiments, Phys. Rev. D 79 (2009) 024029 [arXiv:0808.2845] [INSPIRE].MathSciNetADSGoogle Scholar
  16. [16]
    A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: a boundary view of horizons and locality, Phys. Rev. D 73 (2006) 086003 [hep-th/0506118] [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Holographic representation of local bulk operators, Phys. Rev. D 74 (2006) 066009 [hep-th/0606141] [INSPIRE].MathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.

Personalised recommendations