Advertisement

Journal of High Energy Physics

, 2012:101 | Cite as

Compactification on the Ω-background and the AGT correspondence

  • Junya YagiEmail author
Article

Abstract

The six-dimensional (2, 0) theory formulated in the Ω-background gives rise to two-dimensional effective degrees of freedom. By compactifying the theory on the circle fibers of two cigar-like manifolds, we find that a natural candidate for the effective theory is a chiral gauged WZW model. The symmetry algebra of the model contains the W-algebra that appears on the two-dimensional side of the AGT correspondence. We show that the expectation values of its currents determine the Seiberg-Witten curve of the four-dimensional side.

Keywords

Supersymmetric gauge theory Conformal and W Symmetry Field Theories in Higher Dimensions 

References

  1. 1.
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    A. Mironov and A. Morozov, On AGT relation in the case of U(3), Nucl. Phys. B 825 (2010) 1 [arXiv:0908.2569] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    N. Wyllard, AN−1 conformal Toda field theory correlation functions from conformal \( \mathcal{N} = {2} \) SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    M. Taki, On AGT conjecture for pure super Yang-Mills and W-algebra, JHEP 05 (2011) 038 [arXiv:0912.4789] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    L.F. Alday and Y. Tachikawa, Affine SL(2) conformal blocks from 4d gauge theories, Lett. Math. Phys. 94 (2010) 87 [arXiv:1005.4469] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    C. Kozcaz, S. Pasquetti, F. Passerini and N. Wyllard, Affine sl(N) conformal blocks from \( \mathcal{N} = {2} \) SU(N) gauge theories, JHEP 01 (2011) 045 [arXiv:1008.1412][INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    A. Braverman, B. Feigin, M. Finkelberg and L. Rybnikov, A finite analog of the AGT relation I: finite W-algebras and quasimapsspaces, Commun. Math. Phys. 308 (2011) 457 [arXiv:1008.3655] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    N. Wyllard, \( \mathcal{W} \) -algebras and surface operators in \( \mathcal{N} = {2} \) gauge theories, J. Phys. A 44 (2011) 155401 [arXiv:1011.0289] [INSPIRE].MathSciNetADSGoogle Scholar
  9. 9.
    G. Bonelli and A. Tanzini, Hitchin systems, \( \mathcal{N} = {2} \) gauge theories and W-gravity, Phys. Lett. B 691 (2010) 111 [arXiv:0909.4031] [INSPIRE].MathSciNetADSGoogle Scholar
  10. 10.
    D. Maulik and A. Okounkov, Quantum groups and quantum cohomology, in preparation.Google Scholar
  11. 11.
    O. Schiffmann and E. Vasserot, Cherednik algebras, W algebras and the equivariant cohomology of the moduli space of instantons on \( {\mathbb{A}^2} \), arXiv:1202.2756.
  12. 12.
    E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500 (1997) 3 [hep-th/9703166] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    D. Gaiotto, N = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSCrossRefGoogle Scholar
  14. 14.
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin systems and the WKB approximation, arXiv:0907.3987 [INSPIRE].
  15. 15.
    E. Witten, Topological quantum field theory, Commun. Math. Phys. 117 (1988) 353 [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].MathSciNetGoogle Scholar
  17. 17.
    L.F. Alday, F. Benini and Y. Tachikawa, Central charges of Liouville and Toda theories from M5-branes, Phys. Rev. Lett. 105 (2010) 141601 [arXiv:0909.4776] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Y. Tachikawa, On W-algebras and the symmetries of defects of 6d \( \mathcal{N} = \left( {2\hbox{,}0} \right) \) theory, JHEP 03 (2011) 043 [arXiv:1102.0076] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    T. Nishioka and Y. Tachikawa, Central charges of para-Liouville and Toda theories from M5-branes, Phys. Rev. D 84 (2011) 046009 [arXiv:1106.1172] [INSPIRE].ADSGoogle Scholar
  20. 20.
    S. Hellerman, D. Orlando and S. Reffert, The omega deformation from string and M-theory, JHEP 07 (2012) 061 [arXiv:1204.4192] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    N. Nekrasov and E. Witten, The omega deformation, branes, integrability and Liouville theory, JHEP 09 (2010) 092 [arXiv:1002.0888] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. 23.
    G.W. Moore and N. Seiberg, Taming the conformal zoo, Phys. Lett. B 220 (1989) 422 [INSPIRE].MathSciNetADSGoogle Scholar
  24. 24.
    S. Elitzur, G.W. Moore, A. Schwimmer and N. Seiberg, Remarks on the canonical quantization of the Chern-Simons-Witten theory, Nucl. Phys. B 326 (1989) 108 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    J. Yagi, On the six-dimensional origin of the AGT correspondence, JHEP 02 (2012) 020 [arXiv:1112.0260] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    A. Kapustin, Holomorphic reduction of \( \mathcal{N} = {2} \) gauge theories, Wilson-t Hooft operators and S-duality, hep-th/0612119 [INSPIRE].
  27. 27.
    P. Townsend, The eleven-dimensional supermembrane revisited, Phys. Lett. B 350 (1995) 184 [hep-th/9501068] [INSPIRE].MathSciNetADSGoogle Scholar
  28. 28.
    R. Gregory, J.A. Harvey and G.W. Moore, Unwinding strings and T-duality of Kaluza-Klein and H-monopoles, Adv. Theor. Math. Phys. 1 (1997) 283 [hep-th/9708086] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  29. 29.
    D. Gaiotto and E. Witten, Supersymmetric boundary conditions in \( \mathcal{N} = {4} \) super Yang-Mills theory, J. Stat. Phys. 135 (2009) 789 [arXiv:0804.2902] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  30. 30.
    E. Witten, Fivebranes and knots, arXiv:1101.3216 [INSPIRE].
  31. 31.
    M. Bershadsky, C. Vafa and V. Sadov, D-branes and topological field theories, Nucl. Phys. B 463 (1996) 420 [hep-th/9511222] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    W. Ogura, Path integral quantization of Chern-Simons gauge theory, Phys. Lett. B 229 (1989) 61 [INSPIRE].MathSciNetADSGoogle Scholar
  33. 33.
    S. Carlip, Inducing Liouville theory from topologically massive gravity, Nucl. Phys. B 362 (1991) 111 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    E. Witten, Analytic continuation of Chern-Simons theory, in AMS/IP studies in advanced mathematics vol. 50 “Chern-Simons gauge theory: 20 years after”, American Mathematical Society, U.S.A. (2011), pg. 347 [arXiv:1001.2933] [INSPIRE].
  35. 35.
    B. Feigin and E. Frenkel, Quantization of the Drinfeld-Sokolov reduction, Phys. Lett. B 246 (1990) 75 [INSPIRE].MathSciNetADSGoogle Scholar
  36. 36.
    B. Feigin and E. Frenkel, Affine Kac-Moody algebras at the critical level and Gelfand-Dikii algebras, Int. J. Mod. Phys. A7S1A (1992) 197 [INSPIRE].MathSciNetGoogle Scholar
  37. 37.
    I.R. Klebanov and A.A. Tseytlin, Entropy of near extremal black p-branes, Nucl. Phys. B 475 (1996) 164 [hep-th/9604089] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    S. Kanno, Y. Matsuo, S. Shiba and Y. Tachikawa, \( \mathcal{N} = {2} \) gauge theories and degenerate fields of Toda theory, Phys. Rev. D 81 (2010) 046004 [arXiv:0911.4787] [INSPIRE].MathSciNetADSGoogle Scholar
  39. 39.
    C.A. Keller, N. Mekareeya, J. Song and Y. Tachikawa, The ABCDEFG of instantons and W-algebras, JHEP 03 (2012) 045 [arXiv:1111.5624] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    Y. Tachikawa, \( \mathcal{N} = {2} \) S-duality via outer-automorphism twists, J. Phys. A 44 (2011) 182001 [arXiv:1009.0339] [INSPIRE].MathSciNetADSGoogle Scholar
  41. 41.
    V. Belavin and B. Feigin, Super Liouville conformal blocks from \( \mathcal{N} = {2} \) SU(2) quiver gauge theories, JHEP 07 (2011) 079 [arXiv:1105.5800] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    D. Gaiotto and E. Witten, S-duality of boundary conditions in \( \mathcal{N} = {4} \) super Yang-Mills theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  43. 43.
    O. Chacaltana, J. Distler and Y. Tachikawa, Nilpotent orbits and codimension-two defects of 6d \( \mathcal{N} = \left( {{2},0} \right) \) theories, arXiv:1203.2930 [INSPIRE].

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of HamburgHamburgGermany

Personalised recommendations