Advertisement

Journal of High Energy Physics

, 2012:100 | Cite as

Duality covariant non-BPS first order systems

  • Guillaume BossardEmail author
  • Stefanos Katmadas
Open Access
Article

Abstract

We study extremal black hole solutions to four dimensional \( \mathcal{N} = {2} \) supergravity based on a cubic symmetric scalar manifold. Using the coset construction available for these models, we define the first order flow equations implied by the corresponding nilpotency conditions on the three-dimensional scalar momenta for the composite non-BPS class of multi-centre black holes. As an application, we directly solve these equations for the single-centre subclass, and write the general solution in a manifestly duality covariant form. This includes all single-centre under-rotating non-BPS solutions, as well as their non-interacting multi-centre generalisations.

Keywords

Black Holes in String Theory Supergravity Models 

References

  1. [1]
    S. Ferrara, R. Kallosh and A. Strominger, \( \mathcal{N} = {2} \) extremal black holes, Phys. Rev. D 52 (1995) 5412 [hep-th/9508072] [INSPIRE].MathSciNetADSGoogle Scholar
  2. [2]
    A. Strominger, Macroscopic entropy of \( \mathcal{N} = {2} \) extremal black holes, Phys. Lett. B 383 (1996) 39 [hep-th/9602111] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    S. Ferrara and R. Kallosh, Supersymmetry and attractors, Phys. Rev. D 54 (1996) 1514 [hep-th/9602136] [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    K. Behrndt, D. Lüst and W.A. Sabra, Stationary solutions of \( \mathcal{N} = {2} \) supergravity, Nucl. Phys. B 510 (1998) 264 [hep-th/9705169] [INSPIRE].ADSGoogle Scholar
  5. [5]
    F. Denef, Supergravity flows and D-brane stability, JHEP 08 (2000) 050 [hep-th/0005049] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    G. Lopes Cardoso, B. de Wit, J. Kappeli and T. Mohaupt, Stationary BPS solutions in \( \mathcal{N} = {2} \) supergravity with R 2 interactions, JHEP 12 (2000) 019 [hep-th/0009234] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J.P. Gauntlett, J.B. Gutowski, C.M. Hull, S. Pakis and H.S. Reall, All supersymmetric solutions of minimal supergravity in five-dimensions, Class. Quant. Grav. 20 (2003) 4587 [hep-th/0209114] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. [8]
    J.P. Gauntlett and J.B. Gutowski, General concentric black rings, Phys. Rev. D 71 (2005) 045002 [hep-th/0408122] [INSPIRE].MathSciNetADSGoogle Scholar
  9. [9]
    A. Castro, J.L. Davis, P. Kraus and F. Larsen, String theory effects on five-dimensional black hole physics, Int. J. Mod. Phys. A 23 (2008) 613 [arXiv:0801.1863] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    A. Ceresole and G. Dall’Agata, Flow equations for non-BPS extremal black holes, JHEP 03 (2007) 110 [hep-th/0702088] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    G. Lopes Cardoso, A. Ceresole, G. Dall’Agata, J.M. Oberreuter and J. Perz, First-order flow equations for extremal black holes in very special geometry, JHEP 10 (2007) 063 [arXiv:0706.3373] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    A. Ceresole, G. Dall’Agata, S. Ferrara and A. Yeranyan, First order flows for \( \mathcal{N} = {2} \) extremal black holes and duality invariants, Nucl. Phys. B 824 (2010) 239 [arXiv:0908.1110] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    E.G. Gimon, F. Larsen and J. Simón, Black holes in supergravity: the non-BPS branch, JHEP 01 (2008) 040 [arXiv:0710.4967] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    D. Gaiotto, W.W. Li and M. Padi, Non-supersymmetric attractor flow in symmetric spaces, JHEP 12 (2007) 093 [arXiv:0710.1638] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    L. Andrianopoli, R. D’Auria, E. Orazi and M. Trigiante, First order description of black holes in moduli space, JHEP 11 (2007) 032 [arXiv:0706.0712] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    L. Andrianopoli, R. D’Auria, E. Orazi and M. Trigiante, First order description of D = 4 static black holes and the Hamilton-Jacobi equation, Nucl. Phys. B 833 (2010) 1 [arXiv:0905.3938] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    G. Bossard, Y. Michel and B. Pioline, Extremal black holes, nilpotent orbits and the true fake superpotential, JHEP 01 (2010) 038 [arXiv:0908.1742] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    A. Ceresole, G. Dall’Agata, S. Ferrara and A. Yeranyan, Universality of the superpotential for d = 4 extremal black holes, Nucl. Phys. B 832 (2010) 358 [arXiv:0910.2697] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    J. Perz, P. Smyth, T. Van Riet and B. Vercnocke, First-order flow equations for extremal and non-extremal black holes, JHEP 03 (2009) 150 [arXiv:0810.1528] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S.-S. Kim, J. Lindman Hörnlund, J. Palmkvist and A. Virmani, Extremal solutions of the S 3 model and nilpotent orbits of G 2(2), JHEP 08 (2010) 072 [arXiv:1004.5242] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    P. Galli, K. Goldstein, S. Katmadas and J. Perz, First-order flows and stabilisation equations for non-BPS extremal black holes, JHEP 06 (2011) 070 [arXiv:1012.4020] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    D. Rasheed, The rotating dyonic black holes of Kaluza-Klein theory, Nucl. Phys. B 454 (1995) 379 [hep-th/9505038] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    T. Matos and C. Mora, Stationary dilatons with arbitrary electromagnetic field, Class. Quant. Grav. 14 (1997) 2331 [hep-th/9610013] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. [24]
    F. Larsen, Rotating Kaluza-Klein black holes, Nucl. Phys. B 575 (2000) 211 [hep-th/9909102] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    T. Ortín, Extremality versus supersymmetry in stringy black holes, Phys. Lett. B 422 (1998) 93 [hep-th/9612142] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    R.R. Khuri and T. Ortín, A nonsupersymmetric dyonic extreme Reissner-Nordstrom black hole, Phys. Lett. B 373 (1996) 56 [hep-th/9512178] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    P.K. Tripathy and S.P. Trivedi, Non-supersymmetric attractors in string theory, JHEP 03 (2006) 022 [hep-th/0511117] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    D. Astefanesei, K. Goldstein, R.P. Jena, A. Sen and S.P. Trivedi, Rotating attractors, JHEP 10 (2006) 058 [hep-th/0606244] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    I. Bena, G. Dall’Agata, S. Giusto, C. Ruef and N.P. Warner, Non-BPS black rings and black holes in Taub-NUT, JHEP 06 (2009) 015 [arXiv:0902.4526] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    G. Dall’Agata, S. Giusto and C. Ruef, U-duality and non-BPS solutions, JHEP 02 (2011) 074 [arXiv:1012.4803] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    K. Goldstein and S. Katmadas, Almost BPS black holes, JHEP 05 (2009) 058 [arXiv:0812.4183] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    G. Bossard and C. Ruef, Interacting non-BPS black holes, Gen. Rel. Grav. 44 (2012) 21 [arXiv:1106.5806] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. [33]
    I. Bena, S. Giusto, C. Ruef and N.P. Warner, Multi-center non-BPS black holes: the solution, JHEP 11 (2009) 032 [arXiv:0908.2121] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    I. Bena, S. Giusto, C. Ruef and N.P. Warner, A (running) bolt for new reasons, JHEP 11 (2009) 089 [arXiv:0909.2559] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    I. Bena, S. Giusto, C. Ruef and N.P. Warner, Supergravity solutions from floating branes, JHEP 03 (2010) 047 [arXiv:0910.1860] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    N. Bobev and C. Ruef, The nuts and bolts of Einstein-Maxwell solutions, JHEP 01 (2010) 124 [arXiv:0912.0010] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    P. Breitenlohner, D. Maison and G.W. Gibbons, Four-dimensional black holes from Kaluza-Klein theories, Commun. Math. Phys. 120 (1988) 295 [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  38. [38]
    M. Günaydin, A. Neitzke, B. Pioline and A. Waldron, BPS black holes, quantum attractor flows and automorphic forms, Phys. Rev. D 73 (2006) 084019 [hep-th/0512296] [INSPIRE].ADSGoogle Scholar
  39. [39]
    E. Bergshoeff, W. Chemissany, A. Ploegh, M. Trigiante and T. Van Riet, Generating geodesic flows and supergravity solutions, Nucl. Phys. B 812 (2009) 343 [arXiv:0806.2310] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    G. Bossard, H. Nicolai and K.S. Stelle, Universal BPS structure of stationary supergravity solutions, JHEP 07 (2009) 003 [arXiv:0902.4438] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    G. Bossard and H. Nicolai, Multi-black holes from nilpotent Lie algebra orbits, Gen. Rel. Grav. 42 (2010) 509 [arXiv:0906.1987] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  42. [42]
    P. Fré, A.S. Sorin and M. Trigiante, Integrability of supergravity black holes and new tensor classifiers of regular and nilpotent orbits, JHEP 04 (2012) 015 [arXiv:1103.0848] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    W. Chemissany, P. Giaccone, D. Ruggeri and M. Trigiante, Black hole solutions to the F 4 -model and their orbits (I), Nucl. Phys. B 863 (2012) 260 [arXiv:1203.6338] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    G. Bossard, Octonionic black holes, JHEP 05 (2012) 113 [arXiv:1203.0530] INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    G. Bossard, 1/8 BPS black hole composites, arXiv:1001.3157 [INSPIRE].
  46. [46]
    R. Kallosh, N. Sivanandam and M. Soroush, Exact attractive non-BPS STU black holes, Phys. Rev. D 74 (2006) 065008 [hep-th/0606263] [INSPIRE].MathSciNetADSGoogle Scholar
  47. [47]
    B. de Wit and A. Van Proeyen, Potentials and symmetries of general gauged \( \mathcal{N} = {2} \) supergravity: Yang-Mills models, Nucl. Phys. B 245 (1984) 89 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    B. de Wit, P.G. Lauwers and A. Van Proeyen, Lagrangians of \( \mathcal{N} = {2} \) supergravity-matter systems, Nucl. Phys. B 255 (1985) 569 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    A. Ceresole, R. D’Auria and S. Ferrara, The symplectic structure of \( \mathcal{N} = {2} \) supergravity and its central extension, Nucl. Phys. Proc. Suppl. 46 (1996) 67 [hep-th/9509160] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  50. [50]
    M. Günaydin, G. Sierra and P. Townsend, The geometry of \( \mathcal{N} = {2} \) Maxwell-Einstein supergravity and Jordan algebras, Nucl. Phys. B 242 (1984) 244 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    S. Ferrara and S. Sabharwal, Quaternionic manifolds for type II superstring vacua of Calabi-Yau spaces, Nucl. Phys. B 332 (1990) 317 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  52. [52]
    S. Ferrara, E.G. Gimon and R. Kallosh, Magic supergravities, \( \mathcal{N} = {8} \) and black hole composites, Phys. Rev. D 74 (2006) 125018 [hep-th/0606211] [INSPIRE].MathSciNetADSGoogle Scholar
  53. [53]
    B. Bates and F. Denef, Exact solutions for supersymmetric stationary black hole composites, JHEP 11 (2011) 127 [hep-th/0304094] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  54. [54]
    S. Ferrara, A. Marrani, E. Orazi, R. Stora and A. Yeranyan, Two-center black holes duality-invariants for STU model and its lower-rank descendants, J. Math. Phys. 52 (2011) 062302 [arXiv:1011.5864] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  55. [55]
    S. Ferrara and A. Marrani, On the moduli space of non-BPS attractors for \( \mathcal{N} = {2} \) symmetric manifolds, Phys. Lett. B 652 (2007) 111 [arXiv:0706.1667] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  56. [56]
    S. Ferrara and R. Kallosh, On \( \mathcal{N} = {8} \) attractors, Phys. Rev. D 73 (2006) 125005 [hep-th/0603247] [INSPIRE].MathSciNetADSGoogle Scholar
  57. [57]
    A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity, JHEP 09 (2005) 038 [hep-th/0506177] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    A. Ceresole and S. Ferrara, Black holes and attractors in supergravity, arXiv:1009.4175 [INSPIRE].
  59. [59]
    S. Ferrara and M. Günaydin, Orbits of exceptional groups, duality and BPS states in string theory, Int. J. Mod. Phys. A 13 (1998) 2075 [hep-th/9708025] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    S. Bellucci, S. Ferrara, M. Günaydin and A. Marrani, Charge orbits of symmetric special geometries and attractors, Int. J. Mod. Phys. A 21 (2006) 5043 [hep-th/0606209] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    R. Emparan and G.T. Horowitz, Microstates of a neutral black hole in M-theory, Phys. Rev. Lett. 97 (2006) 141601 [hep-th/0607023] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    A. Dabholkar, A. Sen and S.P. Trivedi, Black hole microstates and attractor without supersymmetry, JHEP 01 (2007) 096 [hep-th/0611143] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  63. [63]
    E.G. Gimon, F. Larsen and J. Simón, Constituent model of extremal non-BPS black holes, JHEP 07 (2009) 052 [arXiv:0903.0719] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    P. Galli, T. Ortín, J. Perz and C.S. Shahbazi, Non-extremal black holes of \( \mathcal{N} = {2} \) , d = 4 supergravity, JHEP 07 (2011) 041 [arXiv:1105.3311] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    I. Bena, M. Guica and W. Song, Un-twisting the NHEK with spectral flows, arXiv:1203.4227 [INSPIRE].

Copyright information

© SISSA 2012

Authors and Affiliations

  1. 1.Centre de Physique Théorique, École Polytechnique, CNRSPalaiseauFrance

Personalised recommendations