Journal of High Energy Physics

, 2012:92

LHC sensitivity to lepton flavour violating Z boson decays

Open Access
Article

Abstract

We estimate that the LHC could set bounds BR(Zμ±e) < 4.1 × 10−7 and BR(Zτ±μ) < 3.5 × 10−6 (at 95% C.L.) with 20 fb−1 of data at 8 TeV. A similar sensitivity can be anticipated for Zτ±e, because we consider leptonic τ decays such that Zτ±μe±μ + invisible. These limits can be compared to the LEP1 bounds of order 10−5 → 10−6. Such collider searches are sensitive to a flavour-changing effective Z coupling which is energy dependent, so are complementary to bounds obtained from \( \tau \to \ell \overline \ell \ell \) and \( \mu \to e\overline e e \).

Keywords

Rare Decays Beyond Standard Model Phenomenological Models 

References

  1. [1]
    F. del Aguila, J. Aguilar-Saavedra, B. Allanach, J. Alwall, Y. Andreev, et al., Collider aspects of flavour physics at high Q, Eur. Phys. J. C 57 (2008) 183 [arXiv:0801.1800] [INSPIRE].ADSGoogle Scholar
  2. [2]
    I. Hinchliffe and F. Paige, Lepton flavor violation at the CERN LHC, Phys. Rev. D 63 (2001) 115006 [hep-ph/0010086] [INSPIRE].ADSGoogle Scholar
  3. [3]
    R. Allahverdi, B. Dutta, T. Kamon and A. Krislock, Lepton flavor violation at the Large Hadron Collider, Phys. Rev. D 86 (2012) 015026 [arXiv:1203.3276] [INSPIRE].ADSGoogle Scholar
  4. [4]
    K. Hamaguchi and A. Ibarra, Probing lepton flavor violation in slepton NLSP scenarios, JHEP 02 (2005) 028 [hep-ph/0412229] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S. Kaneko, J. Sato, T. Shimomura, O. Vives and M. Yamanaka, Measuring lepton flavour violation at LHC with long-lived slepton in the coannihilation region, Phys. Rev. D 78 (2008) 116013 [arXiv:0811.0703] [INSPIRE].ADSGoogle Scholar
  6. [6]
    A. Bartl et al., Test of lepton flavor violation at LHC, Eur. Phys. J. C 46 (2006) 783 [hep-ph/0510074] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    ATLAS collaboration, G. Aad et al., Search for lepton flavour violation in the emu continuum with the ATLAS detector in \( \sqrt {s} = {7} \) TeV pp collisions at the LHC, Eur. Phys. J. C 72 (2012) 2040 [arXiv:1205.0725] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    D0 collaboration, V.M. Abazov et al., Search for sneutrino production in emu final states in 5.3 fb −1 of \( p\overline p \) collisions at \( \sqrt {s} = {1}.{96} \) TeV, Phys. Rev. Lett. 105 (2010) 191802 [arXiv:1007.4835] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    F. del Aguila and J. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys. B 813 (2009) 22 [arXiv:0808.2468] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A. Akeroyd, C.-W. Chiang and N. Gaur, Leptonic signatures of doubly charged Higgs boson production at the LHC, JHEP 11 (2010) 005 [arXiv:1009.2780] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    CMS collaboration, M Giffels et al., Lepton flavour violation in the neutrinoless τ decay τ → 3μ with the CMS experiment, CMS-CR-2009-013 (2009).
  12. [12]
    LHCb collaboration, I. Bediaga et al., Implications of LHCb measurements and future prospects, [arXiv:1208.3355] [INSPIRE].
  13. [13]
    ATLAS collaboration, L. Serin and R. Stroynowski, Study of lepton number violating decay τμγ in ATLAS, ATL-PHYS-97-114 (1997).
  14. [14]
    S. Kanemura, T. Ota and K. Tsumura, Lepton flavor violation in Higgs boson decays under the rare τ decay results, Phys. Rev. D 73 (2006) 016006 [hep-ph/0505191] [INSPIRE].ADSGoogle Scholar
  15. [15]
    S. Davidson and G.J. Grenier, Lepton flavour violating Higgs and tau to mu gamma, Phys. Rev. D 81 (2010) 095016 [arXiv:1001.0434] [INSPIRE].ADSGoogle Scholar
  16. [16]
    K.A. Assamagan, A. Deandrea and P.-A. Delsart, Search for the lepton flavor violating decay A0/H0 → τ ± μ at hadron colliders, Phys. Rev. D 67 (2003) 035001 [hep-ph/0207302] [INSPIRE].ADSGoogle Scholar
  17. [17]
    A. Goudelis, O. Lebedev and J.-h. Park, Higgs-induced lepton flavor violation, Phys. Lett. B 707 (2012) 369 [arXiv:1111.1715] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    A. Brignole and A. Rossi, Anatomy and phenomenology of μ-τ lepton flavor violation in the MSSM, Nucl. Phys. B 701 (2004) 3 [hep-ph/0404211] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    W. Buchmüller and D. Wyler, Effective lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    OPAL collaboration, R. Akers et al., A search for lepton flavor violating Z 0 decays, Z. Phys. C 67 (1995) 555 [INSPIRE].ADSGoogle Scholar
  21. [21]
    DELPHI collaboration, P. Abreu et al., Search for lepton flavor number violating Z 0 decays, Z. Phys. C 73 (1997) 243 [INSPIRE].Google Scholar
  22. [22]
    OPAL collaboration, G. Abbiendi et al., Search for lepton flavor violation in e + e collisions at \( \sqrt {s} = {189} \) GeV-209 GeV, Phys. Lett. B 519 (2001) 23 [hep-ex/0109011] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    C. Biggio, M. Blennow and E. Fernandez-Martinez, General bounds on non-standard neutrino interactions, JHEP 08 (2009) 090 [arXiv:0907.0097] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    K. Hayasaka et al., Search for lepton flavor violating τ decays into three leptons with 719 million produced τ + τ pairs, Phys. Lett. B 687 (2010) 139 [arXiv:1001.3221] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    SINDRUM collaboration, U. Bellgardt et al., Search for the decay μ +e + e + e , Nucl. Phys. B 299 (1988) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    BABAR collaboration, B. Aubert et al., Searches for lepton flavor violation in the decays τ ±e ± γ and τ ±μ ± γ, Phys. Rev. Lett. 104 (2010) 021802 [arXiv:0908.2381] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    Belle collaboration, K. Hayasaka et al., New search for τμγ and τeγ decays at Belle, Phys. Lett. B 666 (2008) 16 [arXiv:0705.0650] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    MEG collaboration, J. Adam et al., New limit on the lepton-flavour violating decay μ +e + γ, Phys. Rev. Lett. 107 (2011) 171801 [arXiv:1107.5547] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  30. [30]
    R. Gavin, Y. Li, F. Petriello and S. Quackenbush, FEWZ 2.0: a code for hadronic Z production at next-to-next-to-leading order, Comput. Phys. Commun. 182 (2011) 2388 [arXiv:1011.3540] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M. Cacciari, M. Czakon, M. Mangano, A. Mitov and P. Nason, Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation, Phys. Lett. B 710 (2012) 612 [arXiv:1111.5869] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    N. Kidonakis, Two-loop soft anomalous dimensions for single top quark associated production with a W or H , Phys. Rev. D 82 (2010) 054018 [arXiv:1005.4451] [INSPIRE].ADSGoogle Scholar
  33. [33]
    J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  35. [35]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    D. Stump et al., Inclusive jet production, parton distributions and the search for new physics, JHEP 10 (2003) 046 [hep-ph/0303013] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].
  39. [39]
    CMS collaboration, G.L. Bayatian et al., CMS physics technical design report volume I: detector performance and software, CERN-LHCC-2006-001 (2006).
  40. [40]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    T. Junk, Confidence level computation for combining searches with small statistics, Nucl. Instrum. Meth. A 434 (1999) 435 [hep-ex/9902006] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. Read, Modified frequentist analysis of search results (the CLs method), CERN-OPEN-2000-205 (2000).
  43. [43]
    CMS collaboration, V. Khachatryan et al., Measurements of inclusive W and Z cross sections in pp collisions at \( \sqrt {s} = {7} \) TeV, JHEP 01 (2011) 080 [arXiv:1012.2466] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    ATLAS collaboration, G. Aad et al., Measurement of the inclusive W ± and Z/γ cross sections in the electron and muon decay channels in pp collisions at \( \sqrt {s} = {7} \) TeV with the ATLAS detector, Phys. Rev. D 85 (2012) 072004 [arXiv:1109.5141] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA 2012

Authors and Affiliations

  • Sacha Davidson
    • 1
  • Sylvain Lacroix
    • 1
  • Patrice Verdier
    • 1
  1. 1.IPNL, Université de Lyon, Université Lyon 1, CNRS/IN2P3Villeurbanne cedexFrance

Personalised recommendations