Journal of High Energy Physics

, 2012:49 | Cite as

A critical appraisal of NLO+PS matching methods

  • Stefan Höche
  • Frank Krauss
  • Marek Schönherr
  • Frank Siegert
Open Access
Article

Abstract

In this publication, uncertainties in and differences between the MC@NLO and POWHEG methods for matching next-to-leading order QCD calculations with parton showers are discussed. Implementations of both algorithms within the event generator SHERPA and based on Catani-Seymour subtraction are employed to assess the impact on a representative selection of observables. In the case of MC@NLO a substantial simplification is achieved by using dipole subtraction terms to generate the first emission. A phase space restriction is employed, which allows to vary in a transparent way the amount of non-singular radiative corrections that are exponentiated. Effects on various observables are investigated, using the production of a Higgs boson in gluon fusion, with or without an associated jet, as a benchmark process. The case of H+jet production is presented for the first time in an NLO+PS matched simulation. Uncertainties due to scale choices and non-perturbative effects are explored in the production of W± and Z bosons in association with a jet. Corresponding results are compared to data from the Tevatron and LHC experiments.

Keywords

QCD Phenomenology 

References

  1. [1]
    S. Catani, F. Krauss, R. Kuhn and B. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M.L. Mangano, M. Moretti and R. Pittau, Multijet matrix elements and shower evolution in hadronic collisions: \( Wb\overline b \) + n jets as a case study, Nucl. Phys. B 632 (2002) 343 [hep-ph/0108069] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    F. Krauss, Matrix elements and parton showers in hadronic interactions, JHEP 08 (2002) 015 [hep-ph/0205283] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    L. Lönnblad, Correcting the color dipole cascade model with fixed order matrix elements, JHEP 05 (2002) 046 [hep-ph/0112284] [INSPIRE].CrossRefGoogle Scholar
  5. [5]
    N. Lavesson and L. Lönnblad, Merging parton showers and matrix elements: back to basics, JHEP 04 (2008) 085 [arXiv:0712.2966] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S. Höche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers, JHEP 05 (2009) 053 [arXiv:0903.1219] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    K. Hamilton, P. Richardson and J. Tully, A modified CKKW matrix element merging approach to angular-ordered parton showers, JHEP 11 (2009) 038 [arXiv:0905.3072] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    T. Carli, T. Gehrmann and S. Höche, Hadronic final states in deep-inelastic scattering with Sherpa, Eur. Phys. J. C 67 (2010) 73 [arXiv:0912.3715] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    L. Lönnblad and S. Prestel, Matching tree-level matrix elements with interleaved showers, JHEP 03 (2012) 019 [arXiv:1109.4829] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M.H. Seymour, Matrix element corrections to parton shower algorithms, Comput. Phys. Commun. 90 (1995) 95 [hep-ph/9410414] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    M.H. Seymour, A simple prescription for first order corrections to quark scattering and annihilation processes, Nucl. Phys. B 436 (1995) 443 [hep-ph/9410244] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J. André and T. Sjöstrand, Matching of matrix elements and parton showers, Phys. Rev. D 57 (1998) 5767 [hep-ph/9708390] [INSPIRE].ADSGoogle Scholar
  17. [17]
    E. Norrbin and T. Sjöstrand, QCD radiation off heavy particles, Nucl. Phys. B 603 (2001) 297 [hep-ph/0010012] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S. Alioli, K. Hamilton, P. Nason, C. Oleari and E. Re, Jet pair production in POWHEG, JHEP 04 (2011) 081 [arXiv:1012.3380] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. Alioli, P. Nason, C. Oleari and E. Re, Vector boson plus one jet production in POWHEG, JHEP 01 (2011) 095 [arXiv:1009.5594] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    R. Frederix et al., aMC@NLO predictions for Wjj production at the Tevatron, JHEP 02 (2012) 048 [arXiv:1110.5502] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    ATLAS collaboration, G. Aad et al., Search for squarks and gluinos using final states with jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = {7} \) TeV proton-proton collisions, Phys. Lett. B 701 (2011) 186 [arXiv:1102.5290] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    ATLAS collaboration, G. Aad et al., Search for supersymmetry using final states with one lepton, jets and missing transverse momentum with the ATLAS detector in \( \sqrt {s} = {7} \) TeV pp, Phys. Rev. Lett. 106 (2011) 131802 [arXiv:1102.2357] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    CMS collaboration, S. Chatrchyan et al., Search for New Physics with a Mono-Jet and Missing Transverse Energy in pp Collisions at \( \sqrt {s} = {7} \) TeV, Phys. Rev. Lett. 107 (2011) 201804 [arXiv:1106.4775] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    CMS collaboration, S. Chatrchyan et al., Search for New Physics with Jets and Missing Transverse Momentum in pp collisions at \( \sqrt {s} = {7} \) TeV, JHEP 08 (2011) 155 [arXiv:1106.4503] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    CMS collaboration, S. Chatrchyan et al., Search for supersymmetry in pp collisions at \( \sqrt {s} = {7} \) TeV in events with a single lepton, jets and missing transverse momentum, JHEP 08 (2011) 156 [arXiv:1107.1870] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    ATLAS collaboration, G. Aad et al., Measurement of the production cross section for W-bosons in association with jets in pp collisions at \( \sqrt {s} = {7} \) TeV with the ATLAS detector, Phys. Lett. B 698 (2011) 325 [arXiv:1012.5382] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    ATLAS collaboration, G. Aad et al., A measurement of the ratio of the W and Z cross sections with exactly one associated jet in pp collisions at \( \sqrt {s} = {7} \) TeV with ATLAS, Phys. Lett. B 708 (2012) 221 [arXiv:1108.4908] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    ATLAS collaboration, S. Ask, Measurement of the production cross section for W- and Z-bosons in association with jets in ATLAS, arXiv:1106.2061 [INSPIRE].
  30. [30]
    CMS collaboration, S. Chatrchyan et al., Measurement of the Polarization of W Bosons with Large Transverse Momenta in W+Jets Events at the LHC, Phys. Rev. Lett. 107 (2011) 021802 [arXiv:1104.3829] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    CMS collaboration, C. Rogan, W+jets and Z+jets studies with the CMS detector at the CERN LHC, PoS(HCP2009)096.
  32. [32]
    J.M. Campbell and R.K. Ellis, Next-to-leading order corrections to W + 2 jet and Z + 2 jet production at hadron colliders, Phys. Rev. D 65 (2002) 113007 [hep-ph/0202176] [INSPIRE].ADSGoogle Scholar
  33. [33]
    R.K. Ellis, K. Melnikov and G. Zanderighi, W + 3 jet production at the Tevatron, Phys. Rev. D 80 (2009) 094002 [arXiv:0906.1445] [INSPIRE].ADSGoogle Scholar
  34. [34]
    R.K. Ellis, K. Melnikov and G. Zanderighi, Generalized unitarity at work: first NLO QCD results for hadronic W + 3jet production, JHEP 04 (2009) 077 [arXiv:0901.4101] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    C. Berger et al., An Automated Implementation of On-Shell Methods for One-Loop Amplitudes, Phys. Rev. D 78 (2008) 036003 [arXiv:0803.4180] [INSPIRE].ADSGoogle Scholar
  36. [36]
    C. Berger et al., Precise Predictions for W + 3 Jet Production at Hadron Colliders, Phys. Rev. Lett. 102 (2009) 222001 [arXiv:0902.2760] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    C. Berger et al., Next-to-Leading Order QCD Predictions for Z, γ * + 3-Jet Distributions at the Tevatron, Phys. Rev. D 82 (2010) 074002 [arXiv:1004.1659] [INSPIRE].ADSGoogle Scholar
  38. [38]
    C. Berger et al., Precise Predictions for W + 4 Jet Production at the Large Hadron Collider, Phys. Rev. Lett. 106 (2011) 092001 [arXiv:1009.2338] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    H. Ita et al., Precise Predictions for Z + 4 Jets at Hadron Colliders, Phys. Rev. D 85 (2012) 031501 [arXiv:1108.2229] [INSPIRE].ADSGoogle Scholar
  40. [40]
    S. Hoche, F. Krauss, M. Schönherr and F. Siegert, Automating the POWHEG method in Sherpa, JHEP 04 (2011) 024 [arXiv:1008.5399] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S. Catani and M. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503-504] [hep-ph/9605323] [INSPIRE].
  42. [42]
    S. Catani, S. Dittmaier, M.H. Seymour and Z. Trócsányi, The dipole formalism for next-to-leading order QCD calculations with massive partons, Nucl. Phys. B 627 (2002) 189 [hep-ph/0201036] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S. Frixione, A general approach to jet cross-sections in QCD, Nucl. Phys. B 507 (1997) 295 [hep-ph/9706545] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    T. Plehn, D. Rainwater and P. Skands, Squark and gluino production with jets, Phys. Lett. B 645 (2007) 217 [hep-ph/0510144] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    R. Corke and T. Sjöstrand, Improved Parton Showers at Large Transverse Momenta, Eur. Phys. J. C 69 (2010) 1 [arXiv:1003.2384] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    K. Mikaelian, M. Samuel and D. Sahdev, The Magnetic Moment of Weak Bosons Produced in pp and \( p\overline p \) Collisions, Phys. Rev. Lett. 43 (1979) 746 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    C. Goebel, F. Halzen and J. Leveille, Angular zeros of Brown, Mikaelian, Sahdev and Samuel and the factorization of tree amplitudes in gauge theories, Phys. Rev. D 23 (1981) 2682 [INSPIRE].ADSGoogle Scholar
  49. [49]
    Z. Bern, J. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].MathSciNetADSGoogle Scholar
  50. [50]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO vector-boson production matched with shower in POWHEG, JHEP 07 (2008) 060 [arXiv:0805.4802] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    S. Frixione, P. Nason and B.R. Webber, Matching NLO QCD and parton showers in heavy flavor production, JHEP 08 (2003) 007 [hep-ph/0305252] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    R. Frederix et al., W and Z/γ* boson production in association with a bottom-antibottom pair, JHEP 09 (2011) 061 [arXiv:1106.6019] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    R. Frederix, private communication.Google Scholar
  54. [54]
    Y.L. Dokshitzer, D. Diakonov and S. Troian, Hard Processes in Quantum Chromodynamics, Phys. Rept. 58 (1980) 269 [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    A. Buckley et al., General-purpose event generators for LHC physics, Phys. Rept. 504 (2011) 145 [arXiv:1101.2599] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO Higgs boson production via gluon fusion matched with shower in POWHEG, JHEP 04 (2009) 002 [arXiv:0812.0578] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    S. Schumann and F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev. D 68 (2003) 094002 [hep-ph/0307268] [INSPIRE].ADSGoogle Scholar
  59. [59]
    S. Höche, F. Krauss, M. Schönherr and F. Siegert, NLO matrix elements and truncated showers, JHEP 08 (2011) 123 [arXiv:1009.1127] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    S. Höche, S. Schumann and F. Siegert, Hard photon production and matrix-element parton-shower merging, Phys. Rev. D 81 (2010) 034026 [arXiv:0912.3501] [INSPIRE].ADSGoogle Scholar
  61. [61]
    S. Platzer and M. Sjodahl, The Sudakov veto algorithm reloaded, Eur. Phys. J. Plus 127 (2012) 26 [arXiv:1108.6180] [INSPIRE].CrossRefGoogle Scholar
  62. [62]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    T. Gleisberg et al., SHERPA 1. alpha: a proof of concept version, JHEP 02 (2004) 056 [hep-ph/0311263] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    F. Krauss, R. Kuhn and G. Soff, AMEGIC++ 1.0: A matrix element generator in C++, JHEP 02 (2002) 044 [hep-ph/0109036] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J. C 53 (2008) 501 [arXiv:0709.2881] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE].ADSGoogle Scholar
  68. [68]
    A. Buckley et al., Rivet user manual, arXiv:1003.0694 [INSPIRE].
  69. [69]
    S. Catani, Y.L. Dokshitzer, M. Seymour and B. Webber, Longitudinally invariant K clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    S.D. Ellis and D.E. Soper, Successive combination jet algorithm for hadron collisions, Phys. Rev. D 48 (1993) 3160 [hep-ph/9305266] [INSPIRE].ADSGoogle Scholar
  71. [71]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283.ADSCrossRefGoogle Scholar
  73. [73]
    A. Djouadi, M. Spira and P. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    M.L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP 01 (2007) 013 [hep-ph/0611129] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    J. Campbell, R. K. Ellis and C. Williams, MCFM - Monte Carlo for FeMtobarn processes, http://mcfm.fnal.gov.
  76. [76]
    V. Ravindran, J. Smith and W. Van Neerven, Next-to-leading order QCD corrections to differential distributions of Higgs boson production in hadron hadron collisions, Nucl. Phys. B 634 (2002) 247 [hep-ph/0201114] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    J.-C. Winter, F. Krauss and G. Soff, A modified cluster hadronization model, Eur. Phys. J. C 36 (2004) 381 [hep-ph/0311085] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    F. Krauss et al., SHERPAs new hadronisation model, in preparation.Google Scholar
  79. [79]
    T. Sjöstrand and M. van Zijl, A multiple interaction model for the event structure in hadron collisions, Phys. Rev. D 36 (1987) 2019 [INSPIRE].ADSGoogle Scholar
  80. [80]
    S. Alekhin et al., HERA and the LHC: A Workshop on the implications of HERA for LHC physics: Proceedings Part A, hep-ph/0601012 [INSPIRE].
  81. [81]
    F. Krauss, T. Laubrich and F. Siegert, Simulation of hadron decays in SHERPA , in preparation.Google Scholar
  82. [82]
    M. Schönherr and F. Krauss, Soft photon radiation in particle decays in SHERPA, JHEP 12 (2008) 018 [arXiv:0810.5071] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Parton Fragmentation and String Dynamics, Phys. Rept. 97 (1983) 31 [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    B. Andersson, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology. Vol. 7: The Lund model, Cambridge University Press, Cambridge U.K. (1997).Google Scholar
  85. [85]
    CDF collaboration, T. Aaltonen et al., Measurement of inclusive jet cross-sections in Z/γ *(→ ee)+ jets Production in \( p\overline p \) Collisions at \( \sqrt {s} = {1}{.96} \) TeV, Phys. Rev. Lett. 100 (2008) 102001 [arXiv:0711.3717] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    CDF collaboration, A. Abulencia et al., Measurement of the inclusive jet cross section in \( p\overline p \) interactions at \( \sqrt {s} = {1}{.96} \) TeV using a cone-based jet algorithm, Phys. Rev. D 74 (2006) 071103 [hep-ex/0512020] [INSPIRE].ADSGoogle Scholar
  87. [87]
    D0 collaboration, V. Abazov et al., Measurement of differential Z/γ * + jet + X cross sections in \( p\overline p \) collisions at \( \sqrt {s} = {1}{.96} \) TeV, Phys. Lett. B 669 (2008) 278 [arXiv:0808.1296] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    G.C. Blazey et al., Run II jet physics, hep-ex/0005012 [INSPIRE].
  89. [89]
    D0 collaboration, V. Abazov et al., Measurements of differential cross sections of Z/γ *+jets+X events in proton anti-proton collisions at \( \sqrt {s} = {1}{.96} \) TeV, Phys. Lett. B 678 (2009) 45 [arXiv:0903.1748] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    D0 collaboration, V.M. Abazov et al., Measurement of Z/γ *+jet+X angular distributions in \( p\overline p \) collisions at \( \sqrt {s} = {1}{.96} \) TeV, Phys. Lett. B 682 (2010) 370 [arXiv:0907.4286][INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    A. Banfi, G.P. Salam and G. Zanderighi, Resummed event shapes at hadron-hadron colliders, JHEP 08 (2004) 062 [hep-ph/0407287] [INSPIRE]. Erratum added online, 29 November 2004.
  92. [92]
    G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC, Nucl. Phys. B 737 (2006) 73 [hep-ph/0508068] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    P. Nason and G. Ridolfi, A Positive-weight next-to-leading-order Monte Carlo for Z pair hadroproduction, JHEP 08 (2006) 077 [hep-ph/0606275] [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    S. Catani, B. Webber and G. Marchesini, QCD coherent branching and semiinclusive processes at large x, Nucl. Phys. B 349 (1991) 635 [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    M. Dasgupta and G. Salam, Resummation of the jet broadening in DIS, Eur. Phys. J. C 24 (2002) 213 [hep-ph/0110213] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    M. Dasgupta and G.P. Salam, Resummed event shape variables in DIS, JHEP 08 (2002) 032 [hep-ph/0208073] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    G. Bozzi, S. Catani, G. Ferrera, D. de Florian and M. Grazzini, Production of Drell-Yan lepton pairs in hadron collisions: Transverse-momentum resummation at next-to-next-to-leading logarithmic accuracy, Phys. Lett. B 696 (2011) 207 [arXiv:1007.2351] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2012

Authors and Affiliations

  • Stefan Höche
    • 1
  • Frank Krauss
    • 2
  • Marek Schönherr
    • 2
  • Frank Siegert
    • 3
  1. 1.SLAC National Accelerator LaboratoryMenlo ParkU.S.A.
  2. 2.Institute for Particle Physics PhenomenologyDurham UniversityDurhamU.K.
  3. 3.Physikalisches InstitutAlbert-Ludwigs-Universität FreiburgFreiburgGermany

Personalised recommendations