Advertisement

Journal of High Energy Physics

, 2012:48 | Cite as

Static nonextremal AdS4 black hole solutions

  • Chiara ToldoEmail author
  • Stefan Vandoren
Article

Abstract

We find new static nonextremal black hole solutions that asymptote to AdS4 in D = 4 gauged \( \mathcal{N} \) = 2 supergravity. Solutions include electric and magnetic black holes with constant scalars that in the BPS limit reduce to naked singularities, but also magnetic black holes with running scalars that at extremality reduce to BPS black holes with finite horizon area. For all these solutions we compute area product formulae and show they are independent of the mass. Finally, we also find new examples of nonextremal magnetic black branes.

Keywords

Black Holes Supergravity Models 

References

  1. [1]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M 2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    S.L. Cacciatori, D. Klemm, D.S. Mansi and E. Zorzan, All timelike supersymmetric solutions of N = 2, D = 4 gauged supergravity coupled to abelian vector multiplets, JHEP 05 (2008) 097 [arXiv:0804.0009] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    D. Klemm and E. Zorzan, The timelike half-supersymmetric backgrounds of N = 2, D = 4 supergravity with Fayet-Iliopoulos gauging, Phys. Rev. D 82 (2010) 045012 [arXiv:1003.2974] [INSPIRE].ADSGoogle Scholar
  4. [4]
    K. Hristov, H. Looyestijn and S. Vandoren, BPS black holes in N = 2 D = 4 gauged supergravities, JHEP 08 (2010) 103 [arXiv:1005.3650] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    P. Meessen and T. Ortín, Supersymmetric solutions to gauged N = 2 D = 4 SUGRA: the full timelike shebang, Nucl. Phys. B 863 (2012) 65 [arXiv:1204.0493] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    V.A. Kostelecky and M.J. Perry, Solitonic black holes in gauged N = 2 supergravity, Phys. Lett. B 371 (1996) 191 [hep-th/9512222] [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    D. Klemm, Rotating BPS black holes in matter-coupled AdS 4 supergravity, JHEP 07 (2011) 019 [arXiv:1103.4699] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    S.L. Cacciatori and D. Klemm, Supersymmetric AdS 4 black holes and attractors, JHEP 01 (2010) 085 [arXiv:0911.4926] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    G. Dall’Agata and A. Gnecchi, Flow equations and attractors for black holes in N = 2 U(1) gauged supergravity, JHEP 03 (2011) 037 [arXiv:1012.3756] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    K. Hristov and S. Vandoren, Static supersymmetric black holes in AdS 4 with spherical symmetry, JHEP 04 (2011) 047 [arXiv:1012.4314] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    N. Alonso-Alberca, P. Meessen and T. Ortín, Supersymmetry of topological Kerr-Newman-Taub-NUT-AdS space-times, Class. Quant. Grav. 17 (2000) 2783 [hep-th/0003071] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  12. [12]
    M.M. Caldarelli and D. Klemm, Supersymmetry of Anti-de Sitter black holes, Nucl. Phys. B 545 (1999) 434 [hep-th/9808097] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    W. Sabra, Anti-de Sitter BPS black holes in N = 2 gauged supergravity, Phys. Lett. B 458 (1999) 36 [hep-th/9903143] [INSPIRE].MathSciNetADSGoogle Scholar
  14. [14]
    Z.-W. Chong, M. Cvetič, H. Lü and C. Pope, Charged rotating black holes in four-dimensional gauged and ungauged supergravities, Nucl. Phys. B 717 (2005) 246 [hep-th/0411045] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    D.D. Chow, Single-charge rotating black holes in four-dimensional gauged supergravity, Class. Quant. Grav. 28 (2011) 032001 [arXiv:1011.2202] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    D.D. Chow, Two-charge rotating black holes in four-dimensional gauged supergravity, Class. Quant. Grav. 28 (2011) 175004 [arXiv:1012.1851] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    M. Duff and J.T. Liu, Anti-de Sitter black holes in gauged N = 8 supergravity, Nucl. Phys. B 554 (1999) 237 [hep-th/9901149] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    M. Duff, H. Lü and C. Pope, The black branes of M-theory, Phys. Lett. B 382 (1996) 73 [hep-th/9604052] [INSPIRE].ADSGoogle Scholar
  19. [19]
    K. Behrndt, M. Cvetic and W. Sabra, Non-extreme black holes of five dimensional N = 2 AdS supergravity, Nucl. Phys. B 553 (1999) 317 [hep-th/9810227] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    A.H. Chamseddine and W. Sabra, Magnetic and dyonic black holes in D = 4 gauged supergravity, Phys. Lett. B 485 (2000) 301 [hep-th/0003213] [INSPIRE].MathSciNetADSGoogle Scholar
  21. [21]
    K. Hristov, C. Toldo and S. Vandoren, On BPS bounds in D = 4 N = 2 gauged supergravity, JHEP 12 (2011) 014 [arXiv:1110.2688] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    K. Hristov, C. Toldo and S. Vandoren, Black branes in AdS: BPS bounds and asymptotic charges, arXiv:1201.6592 [INSPIRE].
  23. [23]
    K. Hristov, On BPS bounds in D = 4 N = 2 gauged supergravity II: general matter couplings and black hole masses, JHEP 03 (2012) 095 [arXiv:1112.4289] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    D. Klemm and O. Vaughan, Nonextremal black holes in gauged supergravity and the real formulation of special geometry, arXiv:1207.2679 [INSPIRE].
  25. [25]
    L. Andrianopoli et al., N = 2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: symplectic covariance, gaugings and the momentum map, J. Geom. Phys. 23 (1997) 111 [hep-th/9605032] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. [26]
    S. Bellucci, S. Ferrara, A. Marrani and A. Yeranyan, D = 4 black hole attractors in N = 2 supergravity with Fayet-Iliopoulos terms, Phys. Rev. D 77 (2008) 085027 [arXiv:0802.0141] [INSPIRE].MathSciNetADSGoogle Scholar
  27. [27]
    L. Romans, Supersymmetric, cold and lukewarm black holes in cosmological Einstein-Maxwell theory, Nucl. Phys. B 383 (1992) 395 [hep-th/9203018] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    I. Bena, H. Triendl and B. Vercnocke, Camouflaged supersymmetry, arXiv:1111.2601 [INSPIRE].
  29. [29]
    A. Anabalon, F. Canfora, A. Giacomini and J. Oliva, Black holes with primary hair in gauged N = 8 supergravity, JHEP 06 (2012) 010 [arXiv:1203.6627] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    F. Larsen, A string model of black hole microstates, Phys. Rev. D 56 (1997) 1005 [hep-th/9702153] [INSPIRE].ADSGoogle Scholar
  31. [31]
    M. Cvetič, G. Gibbons and C. Pope, Universal area product formulae for rotating and charged black holes in four and higher dimensions, Phys. Rev. Lett. 106 (2011) 121301 [arXiv:1011.0008] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    P. Galli, T. Ortín, J. Perz and C.S. Shahbazi, Non-extremal black holes of N = 2, D = 4 supergravity, JHEP 07 (2011) 041 [arXiv:1105.3311] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Castro and M.J. Rodriguez, Universal properties and the first law of black hole inner mechanics, Phys. Rev. D 86 (2012) 024008 [arXiv:1204.1284] [INSPIRE].ADSGoogle Scholar
  34. [34]
    S. Barisch, G. Lopes Cardoso, M. Haack, S. Nampuri and N.A. Obers, Nernst branes in gauged supergravity, JHEP 11 (2011) 090 [arXiv:1108.0296] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    A. Donos, J.P. Gauntlett and C. Pantelidou, Spatially modulated instabilities of magnetic black branes, JHEP 01 (2012) 061 [arXiv:1109.0471] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Institute for Theoretical Physics and Spinoza InstituteUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations