Advertisement

Journal of High Energy Physics

, 2012:33 | Cite as

Seiberg-Witten theories on ellipsoids

  • Naofumi HamaEmail author
  • Kazuo Hosomichi
Article

Abstract

We present a set of equations for a 4D Killing spinor which guarantees the Seiberg-Witten theories on a curved background to be supersymmetric. The equations involve an SU(2) gauge field and some auxiliary fields in addition to the metric. Fourdimensional ellipsoids with U(1) × U(1) isometry are shown to admit a supersymmetry if these additional fields are chosen appropriately. We compute the partition function of general Seiberg-Witten theories on ellipsoids, and the result suggests a correspondence with 2D Liouville or Toda correlators with general coupling constant b.

Keywords

Supersymmetric gauge theory Extended Supersymmetry 

References

  1. [1]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].MathSciNetGoogle Scholar
  2. [2]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. [3]
    A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    D.L. Jafferis, The exact superconformal R-symmetry extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    N. Hama, K. Hosomichi and S. Lee, Notes on SUSY gauge theories on three-sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    F. Benini, T. Nishioka and M. Yamazaki, 4d index to 3d index and 2d TQFT, arXiv:1109.0283 [INSPIRE].
  7. [7]
    L.F. Alday, M. Fluder and J. Sparks, The large-N limit of M2-branes on Lens spaces, arXiv:1204.1280 [INSPIRE].
  8. [8]
    F. Benini and S. Cremonesi, Partition functions of N = (2,2) gauge theories on S 2 and vortices, arXiv:1206.2356 [INSPIRE].
  9. [9]
    N. Doroud, J. Gomis, B. Le Floch and S. Lee, Exact results in D = 2 supersymmetric gauge theories, arXiv:1206.2606 [INSPIRE].
  10. [10]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. [11]
    N. Wyllard, A N −1 conformal Toda field theory correlation functions from conformal N = 2 SU(N ) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    G. Festuccia and N. Seiberg, Rigid supersymmetric theories in curved superspace, JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    B. Jia and E. Sharpe, Rigidly supersymmetric gauge theories on curved superspace, JHEP 04 (2012) 139 [arXiv:1109.5421] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    H. Samtleben and D. Tsimpis, Rigid supersymmetric theories in 4d Riemannian space, JHEP 05 (2012) 132 [arXiv:1203.3420] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    C. Klare, A. Tomasiello and A. Zaffaroni, Supersymmetry on curved spaces and holography, JHEP 08 (2012) 061 [arXiv:1205.1062] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    T.T. Dumitrescu, G. Festuccia and N. Seiberg, Exploring curved superspace, JHEP 08 (2012) 141 [arXiv:1205.1115] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    J. Kallen, Cohomological localization of Chern-Simons theory, JHEP 08 (2011) 008 [arXiv:1104.5353] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    K. Ohta and Y. Yoshida, Non-Abelian Localization for Supersymmetric Yang-Mills-Chern-Simons Theories on Seifert Manifold, arXiv:1205.0046 [INSPIRE].
  19. [19]
    J. Kallen and M. Zabzine, Twisted supersymmetric 5D Yang-Mills theory and contact geometry, JHEP 05 (2012) 125 [arXiv:1202.1956] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    N. Drukker, D. Gaiotto and J. Gomis, The virtue of defects in 4D gauge theories and 2D CFTs, JHEP 06 (2011) 025 [arXiv:1003.1112] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    K. Hosomichi, S. Lee and J. Park, AGT on the S-duality Wall, JHEP 12 (2010) 079 [arXiv:1009.0340] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    N. Hama, K. Hosomichi and S. Lee, SUSY gauge theories on squashed three-spheres, JHEP 05 (2011) 014 [arXiv:1102.4716] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  23. [23]
    F. Dolan, V. Spiridonov and G. Vartanov, From 4d superconformal indices to 3d partition functions, Phys. Lett. B 704 (2011) 234 [arXiv:1104.1787] [INSPIRE].MathSciNetADSGoogle Scholar
  24. [24]
    A. Gadde and W. Yan, Reducing the 4d Index to the S 3 Partition Function, arXiv:1104.2592 [INSPIRE].
  25. [25]
    Y. Imamura, Relation between the 4d superconformal index and the S 3 partition function, JHEP 09 (2011) 133 [arXiv:1104.4482] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    Y. Imamura and D. Yokoyama, \( \mathcal{N} = {2} \) supersymmetric theories on squashed three-sphere, Phys. Rev. D 85 (2012) 025015 [arXiv:1109.4734] [INSPIRE].ADSGoogle Scholar
  27. [27]
    D. Martelli, A. Passias and J. Sparks, The gravity dual of supersymmetric gauge theories on a squashed three-sphere, Nucl. Phys. B 864 (2012) 840 [arXiv:1110.6400] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    D. Martelli and J. Sparks, The gravity dual of supersymmetric gauge theories on a biaxially squashed three-sphere, arXiv:1111.6930 [INSPIRE].
  29. [29]
    B. de Wit, J. van Holten and A. Van Proeyen, Transformation Rules of N = 2 Supergravity Multiplets, Nucl. Phys. B 167 (1980) 186 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    B. de Wit, J. van Holten and A. Van Proeyen, Structure of N = 2 Supergravity, Nucl. Phys. B 184 (1981) 77 [Erratum ibid. B 222 (1983) 516] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    K. Hosomichi, R.-K. Seong and S. Terashima, Supersymmetric Gauge Theories on the Five-Sphere, Nucl. Phys. B 865 (2012) 376 [arXiv:1203.0371] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, hep-th/0306238 [INSPIRE].
  33. [33]
    M.F. Atiyah, Lecture Notes in Mathematics. Vol. 401: Elliptic Operators and Compact Groups, Springer-Verlag, Berlin Germany (1974).Google Scholar
  34. [34]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    D. Gaiotto, \( \mathcal{N} = {2} \) dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan

Personalised recommendations