Advertisement

Journal of High Energy Physics

, 2012:28 | Cite as

Holographic realization of gauge mediated supersymmetry breaking

  • Kostas Skenderis
  • Marika Taylor
Article

Abstract

The general gauge mediation scenario provides a framework in which properties of a visible sector with soft supersymmetry breaking are computed from current correlation functions in the supersymmetry breaking hidden sector. In this paper we will use holography to model strongly coupled hidden sectors by weakly curved geometries and describe how the current correlators relevant for general gauge mediation are computed by holographic methods. We illustrate the general setup by a toy example which captures most of the relevant features.

Keywords

Supersymmetry Breaking Gauge-gravity correspondence 

References

  1. [1]
    G.F. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    P. Meade, N. Seiberg and D. Shih, General gauge mediation, Prog. Theor. Phys. Suppl. 177 (2009) 143 [arXiv:0801.3278] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  3. [3]
    M. Buican, P. Meade, N. Seiberg and D. Shih, Exploring general gauge mediation, JHEP 03 (2009) 016 [arXiv:0812.3668] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    Z. Komargodski and N. Seiberg, μ and general gauge mediation, JHEP 03 (2009) 072 [arXiv:0812.3900] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].MathSciNetADSzbMATHGoogle Scholar
  6. [6]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].MathSciNetADSGoogle Scholar
  7. [7]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].MathSciNetADSzbMATHGoogle Scholar
  8. [8]
    F. Benini et al., Holographic gauge mediation, JHEP 12 (2009) 031 [arXiv:0903.0619] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    P. McGuirk, G. Shiu and Y. Sumitomo, Holographic gauge mediation via strongly coupled messengers, Phys. Rev. D 81 (2010) 026005 [arXiv:0911.0019] [INSPIRE].ADSGoogle Scholar
  10. [10]
    P. McGuirk, Hidden-sector current-current correlators in holographic gauge mediation, Phys. Rev. D 85 (2012) 045025 [arXiv:1110.5075] [INSPIRE].ADSGoogle Scholar
  11. [11]
    K. Skenderis and P.K. Townsend, Gravitational stability and renormalization group flow, Phys. Lett. B 468 (1999) 46 [hep-th/9909070] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    O. DeWolfe, D.Z. Freedman, S.S. Gubser and A. Karch, Modeling the fifth-dimension with scalars and gravity, Phys. Rev. D 62 (2000) 046008 [hep-th/9909134] [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    K. Skenderis and P.K. Townsend, Hidden supersymmetry of domain walls and cosmologies, Phys. Rev. Lett. 96 (2006) 191301 [hep-th/0602260] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    I. Papadimitriou and K. Skenderis, Correlation functions in holographic RG flows, JHEP 10 (2004) 075 [hep-th/0407071] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  16. [16]
    A. Kehagias and K. Sfetsos, On running couplings in gauge theories from type IIB supergravity, Phys. Lett. B 454 (1999) 270 [hep-th/9902125] [INSPIRE].MathSciNetADSGoogle Scholar
  17. [17]
    S.S. Gubser, Dilaton driven confinement, hep-th/9902155 [INSPIRE].
  18. [18]
    D.Z. Freedman, C. Núñez, M. Schnabl and K. Skenderis, Fake supergravity and domain wall stability, Phys. Rev. D 69 (2004) 104027 [hep-th/0312055] [INSPIRE].ADSGoogle Scholar
  19. [19]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    M. Bianchi, D.Z. Freedman and K. Skenderis, How to go with an RG flow, JHEP 08 (2001) 041 [hep-th/0105276] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    M. Taylor, Holographic realization of general gauge mediation, talk given at New Perspectives in String Theory, Florence Italy, 13 May 2009, and at the Fifth Regional Meeting on String Theory, Crete, 28 Jun-6 Jul 2009, http://hep.physics.uoc.gr/mideast5/talks/Saturday/Taylor.pdf.
  23. [23]
    R. Argurio, M. Bertolini, L. Di Pietro, F. Porri and D. Redigolo, Holographic correlators for general gauge mediation, JHEP 08 (2012) 086 [arXiv:1205.4709] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.KdV Institute for MathematicsAmsterdamThe Netherlands
  2. 2.Institute for Theoretical PhysicsAmsterdamThe Netherlands

Personalised recommendations