Journal of High Energy Physics

, 2012:23 | Cite as

Matrix elements of unstable states

  • V. Bernard
  • D. HojaEmail author
  • U.-G. Meißner
  • A. Rusetsky
Open Access


Using the language of non-relativistic effective Lagrangians, we formulate a systematic framework for the calculation of resonance matrix elements in lattice QCD. The generalization of the Lüscher-Lellouch formula for these matrix elements is derived. We further discuss in detail the procedure of the analytic continuation of the resonance matrix elements into the complex energy plane and investigate the infinite-volume limit.


Lattice Quantum Field Theory Lattice Gauge Field Theories 


  1. [1]
    QCDSF collaboration, M. Gurtler et al., Vector meson electromagnetic form factors, PoS(LATTICE 2008)051.
  2. [2]
    C. Alexandrou, G. Koutsou, H. Neff, J.W. Negele, W. Schroers and A. Tsapalis, Nucleon to delta electromagnetic transition form factors in lattice QCD, Phys. Rev. D 77 (2008) 085012 [arXiv:0710.4621] [INSPIRE].ADSGoogle Scholar
  3. [3]
    C. Alexandrou et al., Delta-baryon electromagnetic form factors in lattice QCD, Phys. Rev. D 79 (2009) 014507 [arXiv:0810.3976] [INSPIRE].ADSGoogle Scholar
  4. [4]
    C. Alexandrou, Nucleon to Δ and Δ form factors in Lattice QCD, AIP Conf. Proc. 1432 (2012) 62 [arXiv:1108.4112] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    C. Alexandrou, G. Koutsou, T. Leontiou, J.W. Negele and A. Tsapalis, Axial Nucleon and Nucleon to Delta form factors and the Goldberger-Treiman Relations from Lattice QCD, Phys. Rev. D 76 (2007) 094511 [Erratum ibid. D 80 (2009) 099901] [arXiv:0912.0394] [INSPIRE].
  6. [6]
    C. Alexandrou et al., Axial and pseudoscalar form-factors of the Δ+(1232), PoS(Lattice 2010)141 [arXiv:1011.0411] [INSPIRE].
  7. [7]
    C. Alexandrou et al., The Δ(1232) axial charge and form factors from lattice QCD, Phys. Rev. Lett. 107 (2011) 141601 [arXiv:1106.6000] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    H.-W. Lin and S.D. Cohen, Roper Properties on the Lattice: An Update, AIP Conf. Proc. 1432 (2012) 305 [arXiv:1108.2528] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S. Mandelstam, Dynamical variables in the Bethe-Salpeter formalism, Proc. Roy. Soc. Lond. A 233 (1955) 248 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    K. Huang and H.A. Weldon, Bound State Wave Functions and Bound State Scattering in Relativistic Field Theory, Phys. Rev. D 11 (1975) 257 [INSPIRE].ADSGoogle Scholar
  11. [11]
    M. Lüscher, Two particle states on a torus and their relation to the scattering matrix, Nucl. Phys. B 354 (1991) 531 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S. He, X. Feng and C. Liu, Two particle states and the S-matrix elements in multi-channel scattering, JHEP 07 (2005) 011 [hep-lat/0504019] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    C. Liu, X. Feng and S. He, Two particle states in a box and the S-matrix in multi-channel scattering, Int. J. Mod. Phys. A 21 (2006) 847 [hep-lat/0508022] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. Lage, U.-G. Meissner and A. Rusetsky, A Method to measure the antikaon-nucleon scattering length in lattice QCD, Phys. Lett. B 681 (2009) 439 [arXiv:0905.0069] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    V. Bernard, M. Lage, U.-G. Meissner and A. Rusetsky, Scalar mesons in a finite volume, JHEP 01 (2011) 019 [arXiv:1010.6018] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Döring, U.-G. Meissner, E. Oset and A. Rusetsky, Unitarized Chiral Perturbation Theory in a finite volume: Scalar meson sector, Eur. Phys. J. A 47 (2011) 139 [arXiv:1107.3988] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Martinez Torres, L. Dai, C. Koren, D. Jido and E. Oset, The KD, ηD s interaction in finite volume and the nature of the D s*0(2317) resonance, Phys. Rev. D 85 (2012) 014027 [arXiv:1109.0396] [INSPIRE].ADSGoogle Scholar
  18. [18]
    M. Döring and U.G. Meissner, Finite volume effects in pion-kaon scattering and reconstruction of the κ(800) resonance, JHEP 01 (2012) 009 [arXiv:1111.0616] [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    K. Polejaeva and A. Rusetsky, Three particles in a finite volume, Eur. Phys. J. A 48 (2012) 67 [arXiv:1203.1241] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    C. Michael, Particle Decay In Lattice Gauge Theory, Nucl. Phys. B 327 (1989) 515 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    U.-G. Meissner, K. Polejaeva and A. Rusetsky, Extraction of the resonance parameters at finite times, Nucl. Phys. B 846 (2011) 1 [arXiv:1007.0860] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Asakawa, T. Hatsuda and Y. Nakahara, Maximum entropy analysis of the spectral functions in lattice QCD, Prog. Part. Nucl. Phys. 46 (2001) 459 [hep-lat/0011040] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Sasaki, K. Sasaki, T. Hatsuda and M. Asakawa, Bayesian approach to the first excited nucleon state in lattice QCD, Nucl. Phys. Proc. Suppl. 119 (2003) 302 [hep-lat/0209059] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  24. [24]
    K. Sasaki, S. Sasaki and T. Hatsuda, Spectral analysis of excited nucleons in lattice QCD with maximum entropy method, Phys. Lett. B 623 (2005) 208 [hep-lat/0504020] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    P. Giudice, D. McManus and M. Peardon, A comparison of analysis techniques for extracting resonance parameters from lattice Monte Carlo data, arXiv:1204.2745 [INSPIRE].
  26. [26]
    L. Lellouch and M. Lüscher, Weak transition matrix elements from finite volume correlation functions, Commun. Math. Phys. 219 (2001) 31 [hep-lat/0003023] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  27. [27]
    C. Kim, C. Sachrajda and S.R. Sharpe, Finite-volume effects for two-hadron states in moving frames, Nucl. Phys. B 727 (2005) 218 [hep-lat/0507006] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    H.B. Meyer, Lattice QCD and the Timelike Pion Form Factor, Phys. Rev. Lett. 107 (2011) 072002 [arXiv:1105.1892] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M.T. Hansen and S.R. Sharpe, Multiple-channel generalization of Lellouch-Lüscher formula, Phys. Rev. D 86 (2012) 016007 [arXiv:1204.0826] [INSPIRE].ADSGoogle Scholar
  30. [30]
    D. Hoja, U.-G. Meissner and A. Rusetsky, Resonances in an external field: The 1+1 dimensional case, JHEP 04 (2010) 050 [arXiv:1001.1641] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    K. Rummukainen and S.A. Gottlieb, Resonance scattering phase shifts on a nonrest frame lattice, Nucl. Phys. B 450 (1995) 397 [hep-lat/9503028] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    Z. Fu, Rummukainen-Gottliebs formula on two-particle system with different mass, Phys. Rev. D 85 (2012) 014506 [arXiv:1110.0319] [INSPIRE].ADSGoogle Scholar
  33. [33]
    L. Leskovec and S. Prelovsek, Scattering phase shifts for two particles of different mass and non-zero total momentum in lattice QCD, Phys. Rev. D 85 (2012) 114507 [arXiv:1202.2145] [INSPIRE].ADSGoogle Scholar
  34. [34]
    Z. Davoudi and M.J. Savage, Improving the Volume Dependence of Two-Body Binding Energies Calculated with Lattice QCD, Phys. Rev. D 84 (2011) 114502 [arXiv:1108.5371] [INSPIRE].ADSGoogle Scholar
  35. [35]
    M. Göckeler et al., Scattering phases for meson and baryon resonances on general moving-frame lattices, arXiv:1206.4141 [INSPIRE].
  36. [36]
    S. Beane, P. Bedaque, A. Parreno and M. Savage, Exploring hyperons and hypernuclei with lattice QCD, Nucl. Phys. A 747 (2005) 55 [nucl-th/0311027] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    V. Bernard, M. Lage, U.-G. Meissner and A. Rusetsky, Resonance properties from the finite-volume energy spectrum, JHEP 08 (2008) 024 [arXiv:0806.4495] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    G. Colangelo, J. Gasser, B. Kubis and A. Rusetsky, Cusps in K → 3π decays, Phys. Lett. B 638 (2006) 187 [hep-ph/0604084] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J. Gasser, B. Kubis and A. Rusetsky, Cusps in K → 3π decays: a theoretical framework, Nucl. Phys. B 850 (2011) 96 [arXiv:1103.4273] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    V. Bernard, N. Kaiser, J. Kambor and U.G. Meissner, Chiral structure of the nucleon, Nucl. Phys. B 388 (1992) 315 [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M. Lüscher, Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories. 2. Scattering States, Commun. Math. Phys. 105 (1986) 153 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Döring, U.-G. Meißner, E. Oset and A. Rusetsky, Scalar mesons moving in a finite volume and the role of partial wave mixing, arXiv:1205.4838 [INSPIRE].
  43. [43]
    W. Detmold and M.J. Savage, Electroweak matrix elements in the two nucleon sector from lattice QCD, Nucl. Phys. A 743 (2004) 170 [hep-lat/0403005] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    G.M. de Divitiis and N. Tantalo, Non leptonic two-body decay amplitudes from finite volume calculations, hep-lat/0409154 [INSPIRE].
  45. [45]
    N.H. Christ, C. Kim and T. Yamazaki, Finite volume corrections to the two-particle decay of states with non-zero momentum, Phys. Rev. D 72 (2005) 114506 [hep-lat/0507009] [INSPIRE].ADSGoogle Scholar

Copyright information

© SISSA 2012

Authors and Affiliations

  • V. Bernard
    • 1
  • D. Hoja
    • 2
    Email author
  • U.-G. Meißner
    • 2
    • 3
  • A. Rusetsky
    • 2
  1. 1.Institut de Physique Nucléaire, CNRS/Univ. Paris-Sud 11 (UMR 8608)Orsay CedexFrance
  2. 2.Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical PhysicsUniversität BonnBonnGermany
  3. 3.Forschungszentrum Jülich, Jülich Center for Hadron PhysicsInstitut für Kernphysik (IKP-3) and Institute for Advanced Simulation (IAS-4)JülichGermany

Personalised recommendations