Journal of High Energy Physics

, 2012:11 | Cite as

Higher-derivative scalar-vector-tensor theories: black holes, Galileons, singularity cloaking and holography

Open Access
Article

Abstract

We consider a general Kaluza-Klein reduction of a truncated Lovelock theory. We find necessary geometric conditions for the reduction to be consistent. The resulting lower-dimensional theory is a higher derivative scalar-tensor theory, depends on a single real parameter and yields second-order field equations. Due to the presence of higher-derivative terms, the theory has multiple applications in modifications of Einstein gravity (Galileon/Horndesky theory) and holography (Einstein-Maxwell-Dilaton theories). We find and analyze charged black hole solutions with planar or curved horizons, both in the ‘Einstein’ and ‘Galileon’ frame, with or without cosmological constant. Naked singularities are dressed by a geometric event horizon originating from the higher-derivative terms. The near-horizon region of the near-extremal black hole is unaffected by the presence of the higher derivatives, whether scale invariant or hyperscaling violating. In the latter case, the area law for the entanglement entropy is violated logarithmically, as expected in the presence of a Fermi surface. For negative cosmological constant and planar horizons, thermodynamics and first-order hydrodynamics are derived: the shear viscosity to entropy density ratio does not depend on temperature, as expected from the higher-dimensional scale invariance.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence Black Holes Holography and condensed matter physics (AdS/CMT) 

References

  1. [1]
    C. Brans and R. Dicke, Machs principle and a relativistic theory of gravitation, Phys. Rev. 124 (1961) 925 [INSPIRE].MathSciNetADSMATHGoogle Scholar
  2. [2]
    D.J. Gross and J.H. Sloan, The quartic effective action for the heterotic string, Nucl. Phys. B 291 (1987) 41 [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    R. Metsaev and A.A. Tseytlin, Order α(two loop) equivalence of the string equations of motion and the σ-model Weyl invariance conditions: dependence on the dilaton and the antisymmetric tensor, Nucl. Phys. B 293 (1987) 385 [INSPIRE].MathSciNetADSGoogle Scholar
  4. [4]
    I. Antoniadis, J. Rizos and K. Tamvakis, Singularity-free cosmological solutions of the superstring effective action, Nucl. Phys. B 415 (1994) 497 [hep-th/9305025] [INSPIRE].ADSGoogle Scholar
  5. [5]
    M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity bound violation in higher derivative gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [INSPIRE].ADSGoogle Scholar
  6. [6]
    R.P. Woodard, Avoiding dark energy with 1/r modifications of gravity, Lect. Notes Phys. 720 (2007) 403 [astro-ph/0601672] [INSPIRE].ADSGoogle Scholar
  7. [7]
    D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [INSPIRE].MathSciNetADSMATHGoogle Scholar
  8. [8]
    G.W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys. 10 (1974) 363.MathSciNetGoogle Scholar
  9. [9]
    A. Nicolis, R. Rattazzi and E. Trincherini, The galileon as a local modification of gravity, Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].MathSciNetADSGoogle Scholar
  10. [10]
    C. Deffayet, G. Esposito-Farese and A. Vikman, Covariant galileon, Phys. Rev. D 79 (2009) 084003 [arXiv:0901.1314] [INSPIRE].ADSGoogle Scholar
  11. [11]
    C. Deffayet, S. Deser and G. Esposito-Farese, Generalized galileons: all scalar models whose curved background extensions maintain second-order field equations and stress-tensors, Phys. Rev. D 80 (2009) 064015 [arXiv:0906.1967] [INSPIRE].ADSGoogle Scholar
  12. [12]
    T. Clifton, P.G. Ferreira, A. Padilla and C. Skordis, Modified gravity and cosmology, Phys. Rept. 513 (2012) 1 [arXiv:1106.2476] [INSPIRE].MathSciNetADSGoogle Scholar
  13. [13]
    G. Dvali, G. Gabadadze and M. Porrati, 4D gravity on a brane in 5D Minkowski space, Phys. Lett. B 485 (2000) 208 [hep-th/0005016] [INSPIRE].MathSciNetADSGoogle Scholar
  14. [14]
    T.P. Sotiriou and V. Faraoni, f(R) theories of gravity, Rev. Mod. Phys. 82 (2010) 451 [arXiv:0805.1726] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  15. [15]
    A. De Felice and S. Tsujikawa, f(R) theories, Living Rev. Rel. 13 (2010) 3 [arXiv:1002.4928] [INSPIRE].Google Scholar
  16. [16]
    L. Amendola, C. Charmousis and S.C. Davis, Mimicking general relativity in the solar system, Phys. Rev. D 78 (2008) 084009 [arXiv:0801.4339] [INSPIRE].ADSGoogle Scholar
  17. [17]
    J. Khoury and A. Weltman, Chameleon fields: Awaiting surprises for tests of gravity in space, Phys. Rev. Lett. 93 (2004) 171104 [astro-ph/0309300] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J. Khoury and A. Weltman, Chameleon cosmology, Phys. Rev. D 69 (2004) 044026 [astro-ph/0309411] [INSPIRE].MathSciNetADSGoogle Scholar
  19. [19]
    C. Deffayet, G. Dvali, G. Gabadadze and A.I. Vainshtein, Nonperturbative continuity in graviton mass versus perturbative discontinuity, Phys. Rev. D 65 (2002) 044026 [hep-th/0106001] [INSPIRE].ADSGoogle Scholar
  20. [20]
    C. Deffayet, X. Gao, D. Steer and G. Zahariade, From k-essence to generalised galileons, Phys. Rev. D 84 (2011) 064039 [arXiv:1103.3260] [INSPIRE].ADSGoogle Scholar
  21. [21]
    C. Charmousis, Higher order gravity theories and their black hole solutions, Lect. Notes Phys. 769 (2009) 299 [arXiv:0805.0568] [INSPIRE].MathSciNetADSGoogle Scholar
  22. [22]
    G. Horndeski, Static spherically symmetric solutions to a system of generalized Einstein-Maxwell field equations, Phys. Rev. D 17 (1978) 391 [INSPIRE].MathSciNetADSGoogle Scholar
  23. [23]
    R. Kerner, Non-linear electrodynamics derived from the Kaluza-Klein theory, in Varna 1987, Infinite dimensional Lie algebras and Quantume Field Theory, World Scientific, Singapore (1988).Google Scholar
  24. [24]
    F. Müller-Hoissen, Dimensionally continued Euler forms, Kaluza-Klein cosmology and dimensional reduction, Class. Quant. Grav. 3 (1986) 665 [INSPIRE].ADSMATHGoogle Scholar
  25. [25]
    F. Müller-Hoissen, Nonminimal coupling from dimensional reduction of the Gauss-Bonnet action, Phys. Lett. B 201 (1988) 325 [INSPIRE].ADSGoogle Scholar
  26. [26]
    F. Müller-Hoissen, Gravity actions, boundary terms and second-order field equations, Nucl. Phys. B 337 (1990) 709 [INSPIRE].ADSGoogle Scholar
  27. [27]
    C. Charmousis and J.-F. Dufaux, General Gauss-Bonnet brane cosmology, Class. Quant. Grav. 19 (2002) 4671 [hep-th/0202107] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  28. [28]
    P. Binetruy, C. Charmousis, S.C. Davis and J.-F. Dufaux, Avoidance of naked singularities in dilatonic brane world scenarios with a Gauss-Bonnet term, Phys. Lett. B 544 (2002) 183 [hep-th/0206089] [INSPIRE].MathSciNetADSGoogle Scholar
  29. [29]
    C. Charmousis, S.C. Davis and J.-F. Dufaux, Scalar brane backgrounds in higher order curvature gravity, JHEP 12 (2003) 029 [hep-th/0309083] [INSPIRE].MathSciNetADSGoogle Scholar
  30. [30]
    L. Amendola, C. Charmousis and S.C. Davis, Constraints on Gauss-Bonnet gravity in dark energy cosmologies, JCAP 12 (2006) 020 [hep-th/0506137] [INSPIRE].ADSGoogle Scholar
  31. [31]
    S. Nojiri, S.D. Odintsov and M. Sasaki, Gauss-Bonnet dark energy, Phys. Rev. D 71 (2005) 123509 [hep-th/0504052] [INSPIRE].ADSGoogle Scholar
  32. [32]
    B.M. Carter and I.P. Neupane, Towards inflation and dark energy cosmologies from modified Gauss-Bonnet theory, JCAP 06 (2006) 004 [hep-th/0512262] [INSPIRE].Google Scholar
  33. [33]
    L. Amendola, C. Charmousis and S.C. Davis, Constraints on Gauss-Bonnet gravity in dark energy cosmologies, JCAP 12 (2006) 020 [hep-th/0506137] [INSPIRE].ADSGoogle Scholar
  34. [34]
    T. Koivisto and D.F. Mota, Cosmology and astrophysical constraints of Gauss-Bonnet dark energy, Phys. Lett. B 644 (2007) 104 [astro-ph/0606078] [INSPIRE].MathSciNetADSGoogle Scholar
  35. [35]
    T. Koivisto and D.F. Mota, Gauss-Bonnet quintessence: background evolution, large scale structure and cosmological constraints, Phys. Rev. D 75 (2007) 023518 [hep-th/0609155] [INSPIRE].ADSGoogle Scholar
  36. [36]
    L. Amendola, C. Charmousis and S.C. Davis, Solar system constraints on Gauss-Bonnet mediated dark energy, JCAP 10 (2007) 004 [arXiv:0704.0175] [INSPIRE].ADSGoogle Scholar
  37. [37]
    K. Bamba, Z.-K. Guo and N. Ohta, Accelerating cosmologies in the Einstein-Gauss-Bonnet theory with dilaton, Prog. Theor. Phys. 118 (2007) 879 [arXiv:0707.4334] [INSPIRE].ADSMATHGoogle Scholar
  38. [38]
    K.-i. Maeda, N. Ohta and R. Wakebe, Accelerating universes in string theory via field redefinition, Eur. Phys. J. C 72 (2012) 1949 [arXiv:1111.3251] [INSPIRE].ADSGoogle Scholar
  39. [39]
    K. Van Acoleyen and J. Van Doorsselaere, Galileons from Lovelock actions, Phys. Rev. D 83 (2011) 084025 [arXiv:1102.0487] [INSPIRE].ADSGoogle Scholar
  40. [40]
    C. Charmousis, E.J. Copeland, A. Padilla and P.M. Saffin, Self-tuning and the derivation of a class of scalar-tensor theories, Phys. Rev. D 85 (2012) 104040 [arXiv:1112.4866] [INSPIRE].ADSGoogle Scholar
  41. [41]
    C. Charmousis, E.J. Copeland, A. Padilla and P.M. Saffin, General second order scalar-tensor theory, self tuning and the Fab Four, Phys. Rev. Lett. 108 (2012) 051101 [arXiv:1106.2000] [INSPIRE].ADSGoogle Scholar
  42. [42]
    S. Weinberg, The cosmological constant problem, Rev. Mod. Phys. 61 (1989) 1 [INSPIRE].MathSciNetADSMATHGoogle Scholar
  43. [43]
    E. Babichev, C. Deffayet and G. Esposito-Farese, Constraints on shift-symmetric scalar-tensor theories with a Vainshtein mechanism from bounds on the time variation of G, Phys. Rev. Lett. 107 (2011) 251102 [arXiv:1107.1569] [INSPIRE].ADSGoogle Scholar
  44. [44]
    E. Babichev, C. Deffayet and G. Esposito-Farese, Improving relativistic MOND with galileon k-mouflage, Phys. Rev. D 84 (2011) 061502 [arXiv:1106.2538] [INSPIRE].ADSGoogle Scholar
  45. [45]
    C. Martinez, R. Troncoso and J. Zanelli, Exact black hole solution with a minimally coupled scalar field, Phys. Rev. D 70 (2004) 084035 [hep-th/0406111] [INSPIRE].MathSciNetADSGoogle Scholar
  46. [46]
    C. Martinez, J.P. Staforelli and R. Troncoso, Topological black holes dressed with a conformally coupled scalar field and electric charge, Phys. Rev. D 74 (2006) 044028 [hep-th/0512022] [INSPIRE].MathSciNetADSGoogle Scholar
  47. [47]
    Y. Bardoux, M.M. Caldarelli and C. Charmousis, Conformally coupled scalar black holes admit a flat horizon due to axionic charge, arXiv:1205.4025 [INSPIRE].
  48. [48]
    G.T. Horowitz, Introduction to Holographic Superconductors, arXiv:1002.1722 [INSPIRE].
  49. [49]
    S.A. Hartnoll, Horizons, holography and condensed matter, arXiv:1106.4324 [INSPIRE].
  50. [50]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].MathSciNetADSGoogle Scholar
  51. [51]
    C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].Google Scholar
  52. [52]
    J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].Google Scholar
  53. [53]
    N. Iqbal, H. Liu and M. Mezei, Lectures on holographic non-Fermi liquids and quantum phase transitions, arXiv:1110.3814 [INSPIRE].
  54. [54]
    B. Gouteraux and E. Kiritsis, Generalized holographic quantum criticality at finite density, JHEP 12 (2011) 036 [arXiv:1107.2116] [INSPIRE].ADSGoogle Scholar
  55. [55]
    S. Sachdev, The quantum phases of matter, arXiv:1203.4565 [INSPIRE].
  56. [56]
    N. Ogawa, T. Takayanagi and T. Ugajin, Holographic Fermi surfaces and entanglement entropy, JHEP 01 (2012) 125 [arXiv:1111.1023] [INSPIRE].MathSciNetADSGoogle Scholar
  57. [57]
    B.S. Kim, E. Kiritsis and C. Panagopoulos, Holographic quantum criticality and strange metal transport, New J. Phys. 14 (2012) 043045 [arXiv:1012.3464] [INSPIRE].ADSGoogle Scholar
  58. [58]
    C. Charmousis, B. Gouteraux, B. Kim, E. Kiritsis and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].ADSGoogle Scholar
  59. [59]
    R. Meyer, B. Gouteraux and B.S. Kim, Strange metallic behaviour and the thermodynamics of charged dilatonic black holes, Fortsch. Phys. 59 (2011) 741 [arXiv:1102.4433] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  60. [60]
    B. Gouteraux, B.S. Kim and R. Meyer, Charged dilatonic black holes and their transport properties, Fortsch. Phys. 59 (2011) 723 [arXiv:1102.4440] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  61. [61]
    K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of charged dilaton black holes, JHEP 08 (2010) 078 [arXiv:0911.3586] [INSPIRE].MathSciNetADSGoogle Scholar
  62. [62]
    M. Cadoni, G. D’Appollonio and P. Pani, Phase transitions between Reissner-Nordstrom and dilatonic black holes in 4D AdS spacetime, JHEP 03 (2010) 100 [arXiv:0912.3520] [INSPIRE].MathSciNetADSGoogle Scholar
  63. [63]
    E. Perlmutter, Domain wall holography for finite temperature scaling solutions, JHEP 02 (2011) 013 [arXiv:1006.2124] [INSPIRE].ADSGoogle Scholar
  64. [64]
    K. Goldstein et al., Holography of dyonic dilaton black branes, JHEP 10 (2010) 027 [arXiv:1007.2490] [INSPIRE].ADSGoogle Scholar
  65. [65]
    M. Cadoni and P. Pani, Holography of charged dilatonic black branes at finite temperature, JHEP 04 (2011) 049 [arXiv:1102.3820] [INSPIRE].ADSGoogle Scholar
  66. [66]
    L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].ADSGoogle Scholar
  67. [67]
    X. Dong, S. Harrison, S. Kachru, G. Torroba and H. Wang, Aspects of holography for theories with hyperscaling violation, JHEP 06 (2012) 041 [arXiv:1201.1905] [INSPIRE].ADSGoogle Scholar
  68. [68]
    E. Kiritsis and V. Niarchos, Josephson junctions and AdS/CFT networks, JHEP 07 (2011) 112 [Erratum ibid. 1110 (2011) 095] [arXiv:1105.6100] [INSPIRE].
  69. [69]
    S. Harrison, S. Kachru and H. Wang, Resolving Lifshitz horizons, arXiv:1202.6635 [INSPIRE].
  70. [70]
    J. Bhattacharya, S. Cremonini and A. Sinkovics, On the IR completion of geometries with hyperscaling violation, arXiv:1208.1752 [INSPIRE].
  71. [71]
    P. Kovtun, D. Son and A. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].ADSGoogle Scholar
  72. [72]
    D.G. Boulware and S. Deser, String generated gravity models, Phys. Rev. Lett. 55 (1985) 2656 [INSPIRE].ADSGoogle Scholar
  73. [73]
    J.T. Wheeler, Symmetric solutions to the maximally Gauss-Bonnet extended Einstein equations, Nucl. Phys. B 273 (1986) 732 [INSPIRE].ADSGoogle Scholar
  74. [74]
    J.T. Wheeler, Symmetric solutions to the Gauss-Bonnet extended Einstein equations, Nucl. Phys. B 268 (1986) 737 [INSPIRE].ADSGoogle Scholar
  75. [75]
    D. Wiltshire, Spherically symmetric solutions of Einstein-Maxwell theory with a Gauss-Bonnet term, Phys. Lett. B 169 (1986) 36 [INSPIRE].MathSciNetADSGoogle Scholar
  76. [76]
    R.C. Myers and J.Z. Simon, Black hole thermodynamics in Lovelock gravity, Phys. Rev. D 38 (1988) 2434 [INSPIRE].MathSciNetADSGoogle Scholar
  77. [77]
    S. Mignemi and D. Wiltshire, Spherically symmetric solutions in dimensionally reduced space-times, Class. Quant. Grav. 6 (1989) 987 [INSPIRE].MathSciNetADSMATHGoogle Scholar
  78. [78]
    D.L. Wiltshire, Spherically symmetric solutions in dimensionally reduced space-times with a higher dimensional cosmological constant, Phys. Rev. D 44 (1991) 1100 [INSPIRE].MathSciNetADSGoogle Scholar
  79. [79]
    K.C. Chan, J.H. Horne and R.B. Mann, Charged dilaton black holes with unusual asymptotics, Nucl. Phys. B 447 (1995) 441 [gr-qc/9502042] [INSPIRE].MathSciNetADSGoogle Scholar
  80. [80]
    R.-G. Cai and Y.-Z. Zhang, Black plane solutions in four-dimensional space-times, Phys. Rev. D 54 (1996) 4891 [gr-qc/9609065] [INSPIRE].MathSciNetADSGoogle Scholar
  81. [81]
    R.-G. Cai, J.-Y. Ji and K.-S. Soh, Topological dilaton black holes, Phys. Rev. D 57 (1998) 6547 [gr-qc/9708063] [INSPIRE].MathSciNetADSGoogle Scholar
  82. [82]
    C. Charmousis, B. Gouteraux and J. Soda, Einstein-Maxwell-Dilaton theories with a Liouville potential, Phys. Rev. D 80 (2009) 024028 [arXiv:0905.3337] [INSPIRE].MathSciNetADSGoogle Scholar
  83. [83]
    R.-G. Cai and A. Wang, Non-asymptotically AdS/ds solutions and their higher dimensional origins, Phys. Rev. D 70 (2004) 084042 [hep-th/0406040] [INSPIRE].MathSciNetADSGoogle Scholar
  84. [84]
    S. Mignemi and N. Stewart, Charged black holes in effective string theory, Phys. Rev. D 47 (1993) 5259 [hep-th/9212146] [INSPIRE].MathSciNetADSGoogle Scholar
  85. [85]
    P. Kanti, N. Mavromatos, J. Rizos, K. Tamvakis and E. Winstanley, Dilatonic black holes in higher curvature string gravity, Phys. Rev. D 54 (1996) 5049 [hep-th/9511071] [INSPIRE].MathSciNetADSGoogle Scholar
  86. [86]
    S. Alexeev and M. Pomazanov, Black hole solutions with dilatonic hair in higher curvature gravity, Phys. Rev. D 55 (1997) 2110 [hep-th/9605106] [INSPIRE].ADSGoogle Scholar
  87. [87]
    T. Torii, H. Yajima and K.-i. Maeda, Dilatonic black holes with Gauss-Bonnet term, Phys. Rev. D 55 (1997) 739 [gr-qc/9606034] [INSPIRE].MathSciNetADSGoogle Scholar
  88. [88]
    P. Kanti, N. Mavromatos, J. Rizos, K. Tamvakis and E. Winstanley, Dilatonic black holes in higher curvature string gravity. 2: linear stability, Phys. Rev. D 57 (1998) 6255 [hep-th/9703192] [INSPIRE].MathSciNetADSGoogle Scholar
  89. [89]
    M. Melis and S. Mignemi, Global properties of dilatonic Gauss-Bonnet black holes, Class. Quant. Grav. 22 (2005) 3169 [gr-qc/0501087] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  90. [90]
    M. Melis and S. Mignemi, Global properties of charged dilatonic Gauss-Bonnet black holes, Phys. Rev. D 73 (2006) 083010 [gr-qc/0512132] [INSPIRE].MathSciNetADSGoogle Scholar
  91. [91]
    S. Mignemi, Black hole solutions of dimensionally reduced Einstein-Gauss-Bonnet gravity, Phys. Rev. D 74 (2006) 124008 [gr-qc/0607005] [INSPIRE].MathSciNetADSGoogle Scholar
  92. [92]
    M. Melis and S. Mignemi, Black hole solutions of dimensionally reduced Einstein-Gauss-Bonnet gravity with a cosmological constant, Phys. Rev. D 75 (2007) 024042 [gr-qc/0609133] [INSPIRE].MathSciNetADSGoogle Scholar
  93. [93]
    S. Mignemi, Asymptotic properties of black hole solutions in dimensionally reduced Einstein-Gauss-Bonnet gravity, Gen. Rel. Grav. 39 (2007) 815 [gr-qc/0703059] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  94. [94]
    Z.-K. Guo, N. Ohta and T. Torii, Black holes in the dilatonic Einstein-Gauss-Bonnet theory in various dimensions. I. Asymptotically flat black holes, Prog. Theor. Phys. 120 (2008) 581 [arXiv:0806.2481] [INSPIRE].ADSMATHGoogle Scholar
  95. [95]
    Z.-K. Guo, N. Ohta and T. Torii, Black holes in the dilatonic Einstein-Gauss-Bonnet theory in various dimensions II Asymptotically AdS topological black holes, Prog. Theor. Phys. 121 (2009) 253 [arXiv:0811.3068] [INSPIRE].ADSMATHGoogle Scholar
  96. [96]
    N. Ohta and T. Torii, Black Holes in the Dilatonic Einstein-Gauss-Bonnet Theory in Various Dimensions III Asymptotically AdS Black Holes with k = +-1, Prog. Theor. Phys. 121 (2009) 959 [arXiv:0902.4072] [INSPIRE].ADSMATHGoogle Scholar
  97. [97]
    N. Ohta and T. Torii, Black holes in the dilatonic Einstein-Gauss-Bonnet theory in various dimensions IV: topological black holes with and without cosmological term, Prog. Theor. Phys. 122 (2009) 1477 [arXiv:0908.3918] [INSPIRE].ADSMATHGoogle Scholar
  98. [98]
    K.-i. Maeda, N. Ohta and Y. Sasagawa, Black hole solutions in string theory with Gauss-Bonnet curvature correction, Phys. Rev. D 80 (2009) 104032 [arXiv:0908.4151] [INSPIRE].MathSciNetADSGoogle Scholar
  99. [99]
    C.-M. Chen, D.V. Gal’tsov, N. Ohta and D.G. Orlov, Global solutions for higher-dimensional stretched small black holes, Phys. Rev. D 81 (2010) 024002 [arXiv:0910.3488] [INSPIRE].MathSciNetADSGoogle Scholar
  100. [100]
    N. Ohta and T. Torii, Global structure of black holes in string theory with Gauss-Bonnet correction in various dimensions, Prog. Theor. Phys. 124 (2010) 207 [arXiv:1004.2779] [INSPIRE].ADSMATHGoogle Scholar
  101. [101]
    K.-i. Maeda, N. Ohta and Y. Sasagawa, AdS black hole solution in dilatonic Einstein-Gauss-Bonnet gravity, Phys. Rev. D 83 (2011) 044051 [arXiv:1012.0568] [INSPIRE].ADSGoogle Scholar
  102. [102]
    I. Kanitscheider and K. Skenderis, Universal hydrodynamics of non-conformal branes, JHEP 04 (2009) 062 [arXiv:0901.1487] [INSPIRE].MathSciNetADSGoogle Scholar
  103. [103]
    B. Goutéraux, J. Smolic, M. Smolic, K. Skenderis and M. Taylor, Holography for Einstein-Maxwell-dilaton theories from generalized dimensional reduction, JHEP 01 (2012) 089 [arXiv:1110.2320] [INSPIRE].ADSGoogle Scholar
  104. [104]
    H. Boonstra, K. Skenderis and P. Townsend, The domain wall/QFT correspondence, JHEP 01 (1999) 003 [hep-th/9807137] [INSPIRE].MathSciNetADSGoogle Scholar
  105. [105]
    G. Esposito-Farese and D. Polarski, Scalar tensor gravity in an accelerating universe, Phys. Rev. D 63 (2001) 063504 [gr-qc/0009034] [INSPIRE].ADSGoogle Scholar
  106. [106]
    C. Charmousis and R. Gregory, Axisymmetric metrics in arbitrary dimensions, Class. Quant. Grav. 21 (2004) 527 [gr-qc/0306069] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  107. [107]
    C. Deffayet, O. Pujolàs, I. Sawicki and A. Vikman, Imperfect dark energy from kinetic gravity braiding, JCAP 10 (2010) 026 [arXiv:1008.0048] [INSPIRE].ADSGoogle Scholar
  108. [108]
    P. Bostock, R. Gregory, I. Navarro and J. Santiago, Einstein gravity on the codimension 2-brane?, Phys. Rev. Lett. 92 (2004) 221601 [hep-th/0311074] [INSPIRE].MathSciNetADSGoogle Scholar
  109. [109]
    C. Charmousis and A. Papazoglou, Self-properties of codimension-2 braneworlds, JHEP 07 (2008) 062 [arXiv:0804.2121] [INSPIRE].MathSciNetADSGoogle Scholar
  110. [110]
    C. Charmousis, G. Kofinas and A. Papazoglou, The consistency of codimension-2 braneworlds and their cosmology, JCAP 01 (2010) 022 [arXiv:0907.1640] [INSPIRE].ADSGoogle Scholar
  111. [111]
    I. Kanitscheider, K. Skenderis and M. Taylor, Precision holography for non-conformal branes, JHEP 09 (2008) 094 [arXiv:0807.3324] [INSPIRE].MathSciNetADSGoogle Scholar
  112. [112]
    R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014 [hep-th/0109133] [INSPIRE].ADSGoogle Scholar
  113. [113]
    R.-G. Cai and Q. Guo, Gauss-Bonnet black holes in dS spaces, Phys. Rev. D 69 (2004) 104025 [hep-th/0311020] [INSPIRE].MathSciNetADSGoogle Scholar
  114. [114]
    C. Charmousis and A. Padilla, The instability of vacua in Gauss-Bonnet gravity, JHEP 12 (2008) 038 [arXiv:0807.2864] [INSPIRE].MathSciNetADSGoogle Scholar
  115. [115]
    J. Zanelli, Lecture notes on Chern-Simons (super-)gravities. Second edition (February 2008), hep-th/0502193 [INSPIRE].
  116. [116]
    J. Crisostomo, R. Troncoso and J. Zanelli, Black hole scan, Phys. Rev. D 62 (2000) 084013 [hep-th/0003271] [INSPIRE].MathSciNetADSGoogle Scholar
  117. [117]
    G. Dotti and R.J. Gleiser, Obstructions on the horizon geometry from string theory corrections to Einstein gravity, Phys. Lett. B 627 (2005) 174 [hep-th/0508118] [INSPIRE].MathSciNetADSGoogle Scholar
  118. [118]
    C. Bogdanos, C. Charmousis, B. Goutéraux and R. Zegers, Einstein-Gauss-Bonnet metrics: Black holes, black strings and a staticity theorem, JHEP 10 (2009) 037 [arXiv:0906.4953] [INSPIRE].ADSGoogle Scholar
  119. [119]
    G. Dotti, J. Oliva and R. Troncoso, Static solutions with nontrivial boundaries for the Einstein-Gauss-Bonnet theory in vacuum, Phys. Rev. D 82 (2010) 024002 [arXiv:1004.5287] [INSPIRE].MathSciNetADSGoogle Scholar
  120. [120]
    H. Maeda, Gauss-Bonnet black holes with non-constant curvature horizons, Phys. Rev. D 81 (2010) 124007 [arXiv:1004.0917] [INSPIRE].ADSGoogle Scholar
  121. [121]
    K. Skenderis, M. Taylor and B.C. van Rees, Topologically massive gravity and the AdS/CFT correspondence, JHEP 09 (2009) 045 [arXiv:0906.4926] [INSPIRE].ADSGoogle Scholar
  122. [122]
    M. Barriola and A. Vilenkin, Gravitational field of a global monopole, Phys. Rev. Lett. 63 (1989) 341 [INSPIRE].ADSGoogle Scholar
  123. [123]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].MathSciNetMATHGoogle Scholar
  124. [124]
    Y. Brihaye and E. Radu, Black objects in the Einstein-Gauss-Bonnet theory with negative cosmological constant and the boundary counterterm method, JHEP 09 (2008) 006 [arXiv:0806.1396] [INSPIRE].MathSciNetADSGoogle Scholar
  125. [125]
    R.C. Myers, Higher derivative gravity, surface terms and string theory, Phys. Rev. D 36 (1987) 392 [INSPIRE].ADSGoogle Scholar
  126. [126]
    T. Jacobson and R.C. Myers, Black hole entropy and higher curvature interactions, Phys. Rev. Lett. 70 (1993) 3684 [hep-th/9305016] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  127. [127]
    S. Deser and B. Tekin, Energy in generic higher curvature gravity theories, Phys. Rev. D 67 (2003) 084009 [hep-th/0212292] [INSPIRE].MathSciNetADSGoogle Scholar
  128. [128]
    T. Clunan, S.F. Ross and D.J. Smith, On Gauss-Bonnet black hole entropy, Class. Quant. Grav. 21 (2004) 3447 [gr-qc/0402044] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  129. [129]
    X.-H. Ge and S.-J. Sin, Shear viscosity, instability and the upper bound of the Gauss-Bonnet coupling constant, JHEP 05 (2009) 051 [arXiv:0903.2527] [INSPIRE].ADSGoogle Scholar
  130. [130]
    Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [INSPIRE].MathSciNetADSGoogle Scholar
  131. [131]
    M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The viscosity bound and causality violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [INSPIRE].ADSGoogle Scholar
  132. [132]
    X.-H. Ge, Y. Matsuo, F.-W. Shu, S.-J. Sin and T. Tsukioka, Viscosity bound, causality violation and instability with stringy correction and charge, JHEP 10 (2008) 009 [arXiv:0808.2354] [INSPIRE].MathSciNetADSGoogle Scholar
  133. [133]
    R.-G. Cai, Z.-Y. Nie and Y.-W. Sun, Shear viscosity from effective couplings of gravitons, Phys. Rev. D 78 (2008) 126007 [arXiv:0811.1665] [INSPIRE].ADSGoogle Scholar
  134. [134]
    R.-G. Cai, Y. Liu and Y.-W. Sun, Transport coefficients from extremal Gauss-Bonnet black holes, JHEP 04 (2010) 090 [arXiv:0910.4705] [INSPIRE].MathSciNetADSGoogle Scholar
  135. [135]
    A. Buchel et al., Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [INSPIRE].ADSGoogle Scholar
  136. [136]
    Y.-P. Hu, H.-F. Li and Z.-Y. Nie, The first order hydrodynamics via AdS/CFT correspondence in the Gauss-Bonnet gravity, JHEP 01 (2011) 123 [arXiv:1012.0174] [INSPIRE].MathSciNetADSGoogle Scholar
  137. [137]
    Y.-P. Hu, P. Sun and J.-H. Zhang, Hydrodynamics with conserved current via AdS/CFT correspondence in the Maxwell-Gauss-Bonnet gravity, Phys. Rev. D 83 (2011) 126003 [arXiv:1103.3773] [INSPIRE].ADSGoogle Scholar
  138. [138]
    P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [INSPIRE].MathSciNetADSGoogle Scholar
  139. [139]
    R.-G. Cai, Z.-Y. Nie, N. Ohta and Y.-W. Sun, Shear viscosity from Gauss-Bonnet gravity with a dilaton coupling, Phys. Rev. D 79 (2009) 066004 [arXiv:0901.1421] [INSPIRE].ADSGoogle Scholar
  140. [140]
    S. Cremonini and P. Szepietowski, Generating temperature flow for η s with higher derivatives: from Lifshitz to AdS, JHEP 02 (2012) 038 [arXiv:1111.5623] [INSPIRE].ADSGoogle Scholar
  141. [141]
    S. Cremonini, U. Gursoy and P. Szepietowski, On the temperature dependence of the shear viscosity and holography, [arXiv:1206.3581] [INSPIRE].
  142. [142]
    A. Buchel, Bulk viscosity of gauge theory plasma at strong coupling, Phys. Lett. B 663 (2008) 286 [arXiv:0708.3459] [INSPIRE].ADSGoogle Scholar
  143. [143]
    L.D. Landau and E.M. Lifshitz, Fluid mechanics, 2nd edition, Pergamon Press, London U.K. (1987).MATHGoogle Scholar
  144. [144]
    A. Buchel, Violation of the holographic bulk viscosity bound, Phys. Rev. D 85 (2012) 066004 [arXiv:1110.0063] [INSPIRE].ADSGoogle Scholar
  145. [145]
    G. Gibbons, G.T. Horowitz and P. Townsend, Higher dimensional resolution of dilatonic black hole singularities, Class. Quant. Grav. 12 (1995) 297 [hep-th/9410073] [INSPIRE].MathSciNetADSMATHGoogle Scholar
  146. [146]
    R.-G. Cai and D.-W. Pang, Holography of charged black holes with RF 2 corrections, Phys. Rev. D 84 (2011) 066004 [arXiv:1104.4453] [INSPIRE].ADSGoogle Scholar
  147. [147]
    R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].MathSciNetADSGoogle Scholar
  148. [148]
    A. Dabholkar, R. Kallosh and A. Maloney, A stringy cloak for a classical singularity, JHEP 12 (2004) 059 [hep-th/0410076] [INSPIRE].MathSciNetADSGoogle Scholar
  149. [149]
    Y. Bardoux, C. Charmousis and T. Kolyvaris, Lovelock solutions in the presence of matter sources, Phys. Rev. D 83 (2011) 104020 [arXiv:1012.4390] [INSPIRE].ADSGoogle Scholar
  150. [150]
    U. Gürsoy and E. Kiritsis, Exploring improved holographic theories for QCD: part I, JHEP 02 (2008) 032 [arXiv:0707.1324] [INSPIRE].Google Scholar
  151. [151]
    U. Gürsoy, E. Kiritsis and F. Nitti, Exploring improved holographic theories for QCD: part II, JHEP 02 (2008) 019 [arXiv:0707.1349] [INSPIRE].Google Scholar
  152. [152]
    U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Holography and thermodynamics of 5D dilaton-gravity, JHEP 05 (2009) 033 [arXiv:0812.0792] [INSPIRE].Google Scholar
  153. [153]
    C.N. Pope, Lectures on Kaluza-Klein theory, http://faculty.physics.tamu.edu/pope/.
  154. [154]
    M. Cvetič et al., Embedding AdS black holes in ten-dimensions and eleven-dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [INSPIRE].ADSGoogle Scholar
  155. [155]
    C. Lanczos, The splitting of the Riemann tensor, Rev. Mod. Phys. 34 (1962) 379 [INSPIRE].MathSciNetADSMATHGoogle Scholar
  156. [156]
    R. Zegers, Birkhoff’s theorem in Lovelock gravity, J. Math. Phys. 46 (2005) 072502 [gr-qc/0505016] [INSPIRE].MathSciNetADSGoogle Scholar

Copyright information

© SISSA 2012

Authors and Affiliations

  1. 1.Univ. Paris-Sud, Laboratoire de Physique Théorique, CNRS UMR 8627OrsayFrance
  2. 2.LMPT, Parc de Grandmont, Université Francois Rabelais, CNRS UMR 6083ToursFrance
  3. 3.APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris CitéParis Cedex 13France
  4. 4.Crete Center for Theoretical Physics, Department of PhysicsUniversity of CreteHeraklionGreece

Personalised recommendations