Journal of High Energy Physics

, 2012:10 | Cite as

High-precision scale setting in lattice QCD

  • Budapest-Marseille-Wuppertal collaboration
  • Szabolcs Borsányi
  • Stephan Dürr
  • Zoltán Fodor
  • Christian Hoelbling
  • Sándor D. Katz
  • Stefan Krieg
  • Thorsten Kurth
  • Laurent Lellouch
  • Thomas Lippert
  • Craig McNeile
  • Kálmán K. Szabó
Open Access
Article

Abstract

Scale setting is of central importance in lattice QCD. It is required to predict dimensional quantities in physical units. Moreover, it determines the relative lattice spacings of computations performed at different values of the bare coupling, and this is needed for extrapolating results into the continuum. Thus, we calculate a new quantity, w 0, for setting the scale in lattice QCD, which is based on the Wilson flow like the scale t 0 (M. Luscher, JHEP 08 (2010) 071). It is cheap and straightforward to implement and compute. In particular, it does not involve the delicate fitting of correlation functions at asymptotic times. It typically can be determined on the few per-mil level. We compute its continuum extrapolated value in 2 + 1-flavor QCD for physical and non-physical pion and kaon masses, to allow for mass-independent scale setting even away from the physical mass point. We demonstrate its robustness by computing it with two very different actions (one of them with staggered, the other with Wilson fermions) and by showing that the results agree for physical quark masses in the continuum limit.

Keywords

Lattice QCD Lattice Gauge Field Theories 

Supplementary material

13130_2012_4694_MOESM1_ESM.c (23 kb)
ESM 1 (C 23 kb)
13130_2012_4694_MOESM2_ESM.c (60 kb)
ESM 2 (C 59 kb)

References

  1. [1]
    R. Sommer, A new way to set the energy scale in lattice gauge theories and its applications to the static force and αs in SU(2) Yang-Mills theory, Nucl. Phys. B 411 (1994) 839 [hep-lat/9310022] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    C.W. Bernard et al., The static quark potential in three flavor QCD, Phys. Rev. D 62 (2000) 03453 [hep-lat/0002028] [INSPIRE].Google Scholar
  3. [3]
    M. Donnellan, F. Knechtli, B. Leder and R. Sommer, Determination of the static potential with dynamical fermions, Nucl. Phys. B 849 (2011) 45 [arXiv:1012.3037] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A. Hasenfratz and F. Knechtli, Flavor symmetry and the static potential with hypercubic blocking, Phys. Rev. D 64 (2001) 034504 [hep-lat/0103029] [INSPIRE].ADSGoogle Scholar
  5. [5]
    RBC, UKQCD collaboration, Y. Aoki et al., Continuum limit physics from 2 + 1 flavor domain wall QCD, Phys. Rev. D 83 (2011) 074508 [arXiv:1011.0892] [INSPIRE].ADSGoogle Scholar
  6. [6]
    HPQCD collaboration, C. Davies, E. Follana, I. Kendall, G.P. Lepage and C. McNeile, Precise determination of the lattice spacing in full lattice QCD, Phys. Rev. D 81 (2010) 034506 [arXiv:0910.1229] [INSPIRE].ADSGoogle Scholar
  7. [7]
    Fermilab Lattice and MILC collaboration, A. Bazavov et al., B- and D-meson decay constants from three-flavor lattice QCD, Phys. Rev. D 85 (2012) 114506 [arXiv:1112.3051] [INSPIRE].ADSGoogle Scholar
  8. [8]
    HPQCD Collaboration, UKQCD collaboration, E. Follana, C. Davies, G. Lepage and J. Shigemitsu, High precision determination of the π, K, D and D s decay constants from lattice QCD, Phys. Rev. Lett. 100 (2008) 062002 [arXiv:0706.1726] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A.S. Kronfeld, The f (D s) puzzle, arXiv:0912.0543 [INSPIRE].
  10. [10]
    M. Lüscher, Trivializing maps, the Wilson flow and the HMC algorithm, Commun. Math. Phys. 293 (2010) 899 [arXiv:0907.5491] [INSPIRE].MATHCrossRefGoogle Scholar
  11. [11]
    R. Narayanan and H. Neuberger, Infinite N phase transitions in continuum Wilson loop operators, JHEP 03 (2006) 064 [hep-th/0601210] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    M. Lüscher, Properties and uses of the Wilson flow in lattice QCD, JHEP 08 (2010) 071 [arXiv:1006.4518] [INSPIRE].CrossRefGoogle Scholar
  13. [13]
    M. Lüscher and P. Weisz, Perturbative analysis of the gradient flow in non-abelian gauge theories, JHEP 02 (2011) 051 [arXiv:1101.0963] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Dürr et al., Lattice QCD at the physical point: simulation and analysis details, JHEP 08 (2011)148 [arXiv:1011.2711] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Dürr et al., Lattice QCD at the physical point: light quark masses, Phys. Lett. B 701 (2011)265 [arXiv:1011.2403] [INSPIRE].ADSGoogle Scholar
  16. [16]
    S. Dürr et al., Precision computation of the kaon bag parameter, Phys. Lett. B 705 (2011) 477 [arXiv:1106.3230] [INSPIRE].ADSGoogle Scholar
  17. [17]
    Y. Aoki, G. Endrodi, Z. Fodor, S. Katz and K. Szabo, The order of the quantum chromodynamics transition predicted by the standard model of particle physics, Nature 443 (2006) 675 [hep-lat/0611014] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    Y. Aoki, Z. Fodor, S. Katz and K. Szabo, The QCD transition temperature: results with physical masses in the continuum limit, Phys. Lett. B 643 (2006) 46 [hep-lat/0609068] [INSPIRE].ADSGoogle Scholar
  19. [19]
    Y. Aoki et al., The QCD transition temperature: results with physical masses in the continuum limit II, JHEP 06 (2009) 088 [arXiv:0903.4155] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    Wuppertal-Budapest collaboration, S. Borsányi et al., Is there still any T c mystery in lattice QCD? Results with physical masses in the continuum limit III, JHEP 09 (2010) 073 [arXiv:1005.3508] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    S. Borsányi et al., The QCD equation of state with dynamical quarks, JHEP 11 (2010) 077 [arXiv:1007.2580] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    G. Endrodi, Z. Fodor, S. Katz and K. Szabo, The QCD phase diagram at nonzero quark density, JHEP 04 (2011) 001 [arXiv:1102.1356] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Borsányi et al., Fluctuations of conserved charges at finite temperature from lattice QCD, JHEP 01 (2012) 138 [arXiv:1112.4416] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S. Dürr et al., Scaling study of dynamical smeared-link clover fermions, Phys. Rev. D 79 (2009) 014501 [arXiv:0802.2706] [INSPIRE].ADSGoogle Scholar
  25. [25]
    S. Dürr et al., Ab-initio determination of light hadron masses, Science 322 (2008) 1224 [arXiv:0906.3599] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S. Borsanyi et al., Anisotropic lattices without tears, WUB/12-03 (2012).Google Scholar
  27. [27]
    SciDAC, LHPC, UKQCD collaboration, R.G. Edwards and B. Joo, The Chroma software system for lattice QCD, Nucl. Phys. Proc. Suppl. 140 (2005) 832 [hep-lat/0409003] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    E. Shintani et al., Strong coupling constant from vacuum polarization functions in three-flavor lattice QCD with dynamical overlap fermions, Phys. Rev. D 82 (2010) 074505 [arXiv:1002.0371] [INSPIRE].ADSGoogle Scholar
  29. [29]
    C. McNeile, C. Davies, E. Follana, K. Hornbostel and G. Lepage, High-precision c and b masses and QCD coupling from current-current correlators in lattice and continuum QCD, Phys. Rev. D 82 (2010) 034512 [arXiv:1004.4285] [INSPIRE].ADSGoogle Scholar
  30. [30]
    M. Luscher and P. Weisz, On-shell improved lattice gauge theories, Commun. Math. Phys. 97 (1985)59.MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    S. Capitani, S. Dürr and C. Hölbling, Rationale for UV-filtered clover fermions, JHEP 11 (2006)028 [hep-lat/0607006] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Dürr et al., The ratio FK/Fπ in QCD, Phys. Rev. D 81 (2010) 054507 [arXiv:1001.4692] [INSPIRE].ADSGoogle Scholar
  33. [33]
    C. Morningstar and M.J. Peardon, Analytic smearing of SU(3) link variables in lattice QCD, Phys. Rev. D 69 (2004) 054501 [hep-lat/0311018] [INSPIRE].ADSGoogle Scholar
  34. [34]
    S. Borsányi et al., QCD equation of state from the lattice, AIP Conf. Proc. 1343 (2011) 519 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    ALPHA collaboration, U. Wolff, Monte Carlo errors with less errors, Comput. Phys. Commun. 156 (2004) 143 [Erratum ibid. 176 (2007) 383] [hep-lat/0306017] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  36. [36]
    G.I. Egri et al., Lattice QCD as a video game, Comput. Phys. Commun. 177 (2007) 631 [hep-lat/0611022] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2012

Authors and Affiliations

  • Budapest-Marseille-Wuppertal collaboration
  • Szabolcs Borsányi
    • 1
  • Stephan Dürr
    • 1
    • 2
  • Zoltán Fodor
    • 1
    • 2
    • 3
  • Christian Hoelbling
    • 1
  • Sándor D. Katz
    • 3
  • Stefan Krieg
    • 1
    • 2
  • Thorsten Kurth
    • 1
  • Laurent Lellouch
    • 4
  • Thomas Lippert
    • 1
    • 2
  • Craig McNeile
    • 1
  • Kálmán K. Szabó
    • 1
  1. 1.Bergische Universität WuppertalWuppertalGermany
  2. 2.Jülich Supercomputing CentreJülichGermany
  3. 3.Institute for Theoretical PhysicsEötvös UniversityBudapestHungary
  4. 4.Centre de Physique Théorique, CNRS, Aix-Marseille U. and U. Sud Toulon-VarMarseilleFrance

Personalised recommendations