Journal of High Energy Physics

, 2011:131 | Cite as

Quantum critical superfluid flows and anisotropic domain walls

  • Daniel Areán
  • Matteo Bertolini
  • Chethan Krishnan
  • Tomáš Procházka


We construct charged anisotropic AdS domain walls as solutions of a consistent truncation of type IIB string theory. These are a one-parameter family of solutions that flow to an AdS fixed point in the IR, exhibiting emergent conformal invariance and quantum criticality. They represent the zero-temperature limit of the holographic superfluids at finite superfluid velocity constructed in arXiv:1010.5777. We show that these domain walls exist only for velocities less than a critical value, agreeing in detail with a conjecture made there. We also comment about the IR limits of flows with velocities higher than this critical value, and point out an intriguing similarity between the phase diagrams of holographic superfluid flows and those of ordinary superconductors with imbalanced chemical potential.


AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) 


  1. [1]
    S.S. Gubser and F.D. Rocha, The gravity dual to a quantum critical point with spontaneous symmetry breaking, Phys. Rev. Lett. 102 (2009) 061601 [arXiv:0807.1737] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    S.S. Gubser, S.S. Pufu and F.D. Rocha, Quantum critical superconductors in string theory and M-theory, Phys. Lett. B 683 (2010) 201 [arXiv:0908.0011] [SPIRES].ADSMathSciNetGoogle Scholar
  5. [5]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Quantum criticality and holographic superconductors in M-theory, JHEP 02 (2010) 060 [arXiv:0912.0512] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    S.S. Gubser, C.P. Herzog, S.S. Pufu and T. Tesileanu, Superconductors from superstrings, Phys. Rev. Lett. 103 (2009) 141601 [arXiv:0907.3510] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    J.P. Gauntlett, J. Sonner and T. Wiseman, Holographic superconductivity in M-theory, Phys. Rev. Lett. 103 (2009) 151601 [arXiv:0907.3796] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    P. Basu, A. Mukherjee and H.-H. Shieh, Supercurrent: vector hair for an AdS black hole, Phys. Rev. D 79 (2009) 045010 [arXiv:0809.4494] [SPIRES].ADSGoogle Scholar
  9. [9]
    C.P. Herzog, P.K. Kovtun and D.T. Son, Holographic model of superfluidity, Phys. Rev. D 79 (2009) 066002 [arXiv:0809.4870] [SPIRES].ADSMathSciNetGoogle Scholar
  10. [10]
    D. Arean, M. Bertolini, J. Evslin and T. Prochazka, On holographic superconductors with DC current, JHEP 07 (2010) 060 [arXiv:1003.5661] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    J. Sonner and B. Withers, A gravity derivation of the Tisza-Landau model in AdS/CFT, Phys. Rev. D 82 (2010) 026001 [arXiv:1004.2707] [SPIRES].ADSGoogle Scholar
  12. [12]
    D. Arean, P. Basu and C. Krishnan, The many phases of holographic superfluids, JHEP 10 (2010) 006 [arXiv:1006.5165] [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    D. Arean, M. Bertolini, C. Krishnan and T. Prochazka, Type IIB holographic superfluid flows, JHEP 03 (2011) 008 [arXiv:1010.5777] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    S.S. Gubser, Breaking an abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].ADSGoogle Scholar
  15. [15]
    R. Combescot, Introduction to FFLO phases and collective mode in the BEC-BCS crossover, cond-mat/0702399.
  16. [16]
    P. Fulde and R.A. Ferrell, Superconductivity in a strong spin-exchange field, Phys. Rev. 135 (1964) A550. ADSCrossRefGoogle Scholar
  17. [17]
    A.I. Larkin and Y.N. Ovchinnikov, Nonuniform state of superconductors, Zh. Eksp. Theor. Fiz. 47 (1964) 1136 [Sov. Phys. JETP 20 (1965) 762].Google Scholar
  18. [18]
    S.S. Gubser and A. Nellore, Ground states of holographic superconductors, Phys. Rev. D 80 (2009) 105007 [arXiv:0908.1972] [SPIRES].ADSGoogle Scholar
  19. [19]
    C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [SPIRES].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Daniel Areán
    • 1
  • Matteo Bertolini
    • 1
    • 2
    • 3
  • Chethan Krishnan
    • 2
    • 3
  • Tomáš Procházka
    • 2
    • 3
  1. 1.International Centre for Theoretical Physics (ICTP)TriesteItaly
  2. 2.SISSATriesteItaly
  3. 3.INFN — Sezione di TriesteTriesteItaly

Personalised recommendations