Journal of High Energy Physics

, 2011:119 | Cite as

Quasi-stable neutralinos at the LHC

  • S. Bobrovskyi
  • W. BuchmüllerEmail author
  • J. Hajer
  • J. Schmidt
Open Access


We study supersymmetric extensions of the Standard Model with small R-parity and lepton number violating couplings which are naturally consistent with primordial nucleosynthesis, thermal leptogenesis and gravitino dark matter. We consider supergravity models where the gravitino is the lightest superparticle followed by a bino-like next-to-lightest superparticle (NLSP). Extending previous work we investigate in detail the sensitivity of LHC experiments to the R-parity breaking parameter ζ for various gluino and squark masses. We perform a simulation of signal and background events for the generic detector DELPHES for which we implement the finite NLSP decay length. We find that for gluino and squark masses accessible at the LHC, values of ζ can be probed which are one to two orders of magnitude smaller than the present upper bound obtained from astrophysics and cosmology.


Supersymmetry Phenomenology 


  1. [1]
    L.J. Hall and M. Suzuki, Explicit R-Parity Breaking in Supersymmetric Models, Nucl. Phys. B 231 (1984) 419 [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    G.G. Ross and J.W.F. Valle, Supersymmetric Models Without R-Parity, Phys. Lett. B 151 (1985) 375 [SPIRES].ADSGoogle Scholar
  3. [3]
    J.R. Ellis, G. Gelmini, C. Jarlskog, G.G. Ross and J.W.F. Valle, Phenomenology of Supersymmetry with Broken R-Parity, Phys. Lett. B 150 (1985) 142 [SPIRES].ADSGoogle Scholar
  4. [4]
    B.C. Allanach, A. Dedes and H.K. Dreiner, The R parity violating minimal supergravity model, Phys. Rev. D 69 (2004) 115002 [hep-ph/0309196] [SPIRES].ADSGoogle Scholar
  5. [5]
    R. Barbier et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    F. de Campos et al., Probing bilinear R-parity violating supergravity at the LHC, JHEP 05 (2008) 048 [arXiv:0712.2156] [SPIRES].CrossRefGoogle Scholar
  7. [7]
    M. Hirsch, W. Porod and D. Restrepo, Collider signals of gravitino dark matter in bilinearly broken R-parity, JHEP 03 (2005) 062 [hep-ph/0503059] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    F. Takayama and M. Yamaguchi, Gravitino dark matter without R-parity, Phys. Lett. B 485 (2000) 388 [hep-ph/0005214] [SPIRES].ADSGoogle Scholar
  9. [9]
    W. Buchmüller, L. Covi, K. Hamaguchi, A. Ibarra and T. Yanagida, Gravitino dark matter in R-parity breaking vacua, JHEP 03 (2007) 037 [hep-ph/0702184] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    S. Bobrovskyi, W. Buchmüller, J. Hajer and J. Schmidt, Broken R-Parity in the Sky and at the LHC, JHEP 10 (2010) 061 [arXiv:1007.5007] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    S. Lola, P. Osland and A.R. Raklev, Radiative gravitino decays from R-parity violation, Phys. Lett. B 656 (2007) 83 [arXiv:0707.2510] [SPIRES].ADSGoogle Scholar
  12. [12]
    A.A. Abdo et al., Fermi LAT Search for Photon Lines from 30 to 200 GeV and Dark Matter Implications, Phys. Rev. Lett. 104 (2010) 091302 [arXiv:1001.4836] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    The Fermi-LAT collaboration, A.A. Abdo et al., The Spectrum of the Isotropic Diffuse Gamma-Ray Emission Derived From First-Year Fermi Large Area Telescope Data, Phys. Rev. Lett. 104 (2010) 101101 [arXiv:1002.3603] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    G. Vertongen and C. Weniger, Hunting Dark Matter Gamma-Ray Lines with the Fermi LAT, JCAP 05 (2011) 027 [arXiv:1101.2610] [SPIRES].ADSGoogle Scholar
  15. [15]
    K. Ishiwata, T. Ito and T. Moroi, Long-Lived Unstable Superparticles at the LHC, Phys. Lett. B 669 (2008) 28 [arXiv:0807.0975] [SPIRES].ADSGoogle Scholar
  16. [16]
    S. Asai, K. Hamaguchi and S. Shirai, Stop and Decay of Long-lived Charged Massive Particles at the LHC detectors, Phys. Rev. Lett. 103 (2009) 141803 [arXiv:0902.3754] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    P. Meade, M. Reece and D. Shih, Long-Lived Neutralino NLSPs, JHEP 10 (2010) 067 [arXiv:1006.4575] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    K. Desch, S. Fleischmann, P. Wienemann, H.K. Dreiner and S. Grab, Stau as the Lightest Supersymmetric Particle in R-Parity Violating SUSY Models: Discovery Potential with Early LHC Data, Phys. Rev. D 83 (2011) 015013 [arXiv:1008.1580] [SPIRES].ADSGoogle Scholar
  19. [19]
    N.-E. Bomark, D. Choudhury, S. Lola and P. Osland, Flavour Structure of R-violating Neutralino Decays at the LHC, JHEP 07 (2011) 070 [arXiv:1105.4022] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    S. Ovyn, X. Rouby and V. Lemaitre, Delphes, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [SPIRES].
  21. [21]
    B. Mukhopadhyaya, S. Roy and F. Vissani, Correlation between neutrino oscillations and collider signals of supersymmetry in an R-parity violating model, Phys. Lett. B 443 (1998) 191 [hep-ph/9808265] [SPIRES].ADSGoogle Scholar
  22. [22]
    ATLAS collaboration, G. Aad et al., Search for supersymmetric particles in events with lepton pairs and large missing transverse momentum in sqrts = 7 TeV proton-proton collisions with the ATLAS experiment, Eur. Phys. J. C 71 (2011) 1682 [arXiv:1103.6214] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    CMS collaboration, S. Chatrchyan et al., Search for Physics Beyond the Standard Model in Opposite-Sign Dilepton Events at \( \sqrt {s} = 7 \) TeV, JHEP 06 (2011) 026 [arXiv:1103.1348] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    CMS collaboration, S. Chatrchyan et al., Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy at the LHC, JHEP 06 (2011) 077 [arXiv:1104.3168] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].ADSGoogle Scholar
  26. [26]
    CMS collaboration, G.L. Bayatian et al., CMS technical design report, volume II: Physics performance, J. Phys. G 34 (2007) 995 [SPIRES].ADSGoogle Scholar
  27. [27]
    W. Beenakker, R. Hopker and M. Spira, PROSPINO: A program for the PROduction of Supersymmetric Particles In Next-to-leading Order QCD, hep-ph/9611232 [SPIRES].
  28. [28]
    The ATLAS collaboration, G. Aad et al., Expected Performance of the ATLAS Experiment. Detector, Trigger and Physics, arXiv:0901.0512 [SPIRES].
  29. [29]
    N. Kidonakis, Top quark pair and single top production at Tevatron and LHC energies, PoS(ICHEP2010)059 [arXiv:1008.2460] [SPIRES].
  30. [30]
    T. Binoth, G. Ossola, C.G. Papadopoulos and R. Pittau, NLO QCD corrections to tri-boson production, JHEP 06 (2008) 082 [arXiv:0804.0350] [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    R. Gavin, Y. Li, F. Petriello and S. Quackenbush, FEWZ 2.0: A code for hadronic Z production at next-to-next-to-leading order, Comput. Phys. Commun. 182 (2011) 2388 [arXiv:1011.3540] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    J. Alwall et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    B.C. Allanach and M.A. Bernhardt, Including R-parity violation in the numerical computation of the spectrum of the minimal supersymmetric standard model: SOFTSUSY3.2, Comput. Phys. Commun. 181 (2010) 232 [arXiv:0903.1805] [SPIRES].CrossRefzbMATHADSGoogle Scholar
  37. [37]
    M. Muhlleitner, SDECAY: A Fortran code for SUSY particle decays in the MSSM, Acta Phys. Polon. B 35 (2004) 2753 [hep-ph/0409200] [SPIRES].ADSGoogle Scholar
  38. [38]
    J. Alwall et al., Madgraph:
  39. [39]
    CMS collaboration, G. Bayatian et al., CMS physics: Technical design report, (2006).Google Scholar
  40. [40]
    G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [arXiv:1007.1727] [SPIRES].ADSGoogle Scholar
  41. [41]

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • S. Bobrovskyi
    • 1
  • W. Buchmüller
    • 1
    Email author
  • J. Hajer
    • 1
  • J. Schmidt
    • 1
  1. 1.Deutsches Elektronen-Synchrotron DESYHamburgGermany

Personalised recommendations