Journal of High Energy Physics

, 2011:116 | Cite as

Calabi-Yau orbifolds and torus coverings

  • Amihay Hanany
  • Vishnu Jejjala
  • Sanjaye Ramgoolam
  • Rak-Kyeong Seong
Article

Abstract

The theory of coverings of the two-dimensional torus is a standard part of algebraic topology and has applications in several topics in string theory, for example, in topological strings. This paper initiates applications of this theory to the counting of orbifolds of toric Calabi-Yau singularities, with particular attention to Abelian orbifolds of \( {\mathbb{C}^D} \). By doing so, the work introduces a novel analytical method for counting Abelian orbifolds, verifying previous algorithm results. One identifies a p-fold cover of the torus \( {\mathbb{T}^{D - 1}} \) with an Abelian orbifold of the form \( {{{{\mathbb{C}^D}}} \left/ {{{\mathbb{Z}_p}}} \right.} \), for any dimension D and a prime number p. The counting problem leads to polynomial equations modulo p for a given Abelian subgroup of S D , the group of discrete symmetries of the toric diagram for \( {\mathbb{C}^D} \). The roots of the polynomial equations correspond to orbifolds of the form \( {{{{\mathbb{C}^D}}} \left/ {{{\mathbb{Z}_p}}} \right.} \), which are invariant under the corresponding subgroup of S D . In turn, invariance under this subgroup implies a discrete symmetry for the corresponding quiver gauge theory, as is clearly seen by its brane tiling formulation.

Keywords

D-branes Differential and Algebraic Geometry Conformal Field Models in String Theory Superstring Vacua 

References

  1. [1]
    P. Candelas, X. de la Ossa and F. Rodriguez-Villegas, Calabi-Yau manifolds over finite fields. I, hep-th/0012233 [SPIRES].
  2. [2]
    P. Candelas, X. de la Ossa and F. Rodriguez Villegas, Calabi-Yau manifolds over finite fields, II, hep-th/0402133 [SPIRES].
  3. [3]
    M. Kreuzer and H. Skarke, Complete classification of reflexive polyhedra in four dimensions, Adv. Theor. Math. Phys. 4 (2002) 1209 [hep-th/0002240] [SPIRES].MathSciNetGoogle Scholar
  4. [4]
    R.d.M. Koch and S. Ramgoolam, From Matrix Models and quantum fields to Hurwitz space and the absolute Galois group, arXiv:1002.1634 [SPIRES].
  5. [5]
    M. Bauer and C. Itzykson, Triangulations, in The Grothendieck theory of Dessins d’Enfants, London Mathematical Society, Lecture Notes Series 200, edited by L. Schneps.Google Scholar
  6. [6]
    A. Kapustin and E. Witten, Electric-magnetic duality and the geometric Langlands program, hep-th/0604151 [SPIRES].
  7. [7]
    A. Hanany, D. Orlando and S. Reffert, Sublattice Counting and Orbifolds, JHEP 06 (2010) 051 [arXiv:1002.2981] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    J. Davey, A. Hanany and R.-K. Seong, Counting Orbifolds, JHEP 06 (2010) 010 [arXiv:1002.3609] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    A. Hanany and R.-K. Seong, Symmetries of Abelian Orbifolds, JHEP 01 (2011) 027 [arXiv:1009.3017] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    A. Hanany and K.D. Kennaway, Dimer models and toric diagrams, hep-th/0503149 [SPIRES].
  11. [11]
    J.S. Rutherford, The enumeration and symmetry-significant properties of derivative lattices, Acta Cryst. A 48 (1992) 500.MathSciNetGoogle Scholar
  12. [12]
    S. Franco, A. Hanany, K.D. Kennaway, D. Vegh and B. Wecht, Brane Dimers and Quiver Gauge Theories, JHEP 01 (2006) 096 [hep-th/0504110] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    V. Jejjala, S. Ramgoolam and D. Rodriguez-Gomez, Toric CFTs, Permutation Triples and Belyi Pairs, JHEP 03 (2011) 065 [arXiv:1012.2351] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    A. Hanany et al., The Beta Ansatz: A Tale of Two Complex Structures, JHEP 06 (2011) 056 [arXiv:1104.5490] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    A. Hanany, V. Jejjala, S. Ramgoolam and R.-K. Seong, work in progress.Google Scholar
  16. [16]
    A. Hanany, D. Vegh and A. Zaffaroni, Brane Tilings and M2 Branes, JHEP 03 (2009) 012 [arXiv:0809.1440] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  17. [17]
    D.J. Gross and W. Taylor, Twists and Wilson loops in the string theory of two-dimensional QCD, Nucl. Phys. B 403 (1993) 395 [hep-th/9303046] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    S. Cordes, G.W. Moore and S. Ramgoolam, Large-N 2 − D Yang-Mills theory and topological string theory, Commun. Math. Phys. 185 (1997) 543 [hep-th/9402107] [SPIRES].CrossRefMATHADSMathSciNetGoogle Scholar
  19. [19]
    P. Hořava, Topological strings and QCD in two-dimensions, hep-th/9311156 [SPIRES].
  20. [20]
    M. Aganagic, H. Ooguri, N. Saulina and C. Vafa, Black holes, q-deformed 2d Yang-Mills and non-perturbative topological strings, Nucl. Phys. B 715 (2005) 304 [hep-th/0411280] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  21. [21]
    N. Caporaso et al., Topological strings and large-N phase transitions. II: Chiral expansion of q-deformed Yang-Mills theory, JHEP 01 (2006) 036 [hep-th/0511043] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    G.H. Hardy and E.M. Wright, An introduction to the theory of numbers, 6th edition, D.R. Heath-Brown and J.H. Silverman eds., Oxford University Press, Oxford U.K. (2008).Google Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Amihay Hanany
    • 1
  • Vishnu Jejjala
    • 2
  • Sanjaye Ramgoolam
    • 2
  • Rak-Kyeong Seong
    • 1
    • 3
  1. 1.Theoretical Physics Group, The Blackett LaboratoryImperial College LondonLondonU.K.
  2. 2.Department of Physics, Queen MaryUniversity of LondonLondonU.K.
  3. 3.Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan

Personalised recommendations