Advertisement

Journal of High Energy Physics

, 2011:113 | Cite as

Asymptotic \( \mathcal{W} \)-symmetries in three-dimensional higher-spin gauge theories

  • A. Campoleoni
  • S. FredenhagenEmail author
  • S. Pfenninger
Article

Abstract

We discuss how to systematically compute the asymptotic symmetry algebras of generic three-dimensional bosonic higher-spin gauge theories in backgrounds that are asymptotically AdS. We apply these techniques to a one-parameter family of higher-spin gauge theories that can be considered as large N limits of SL(N) × SL(N) Chern-Simons theories, and we provide a closed formula for the structure constants of the resulting infinite-dimensional non-linear \( \mathcal{W} \)-algebras. Along the way we provide a closed formula for the structure constants of all classical \( {\mathcal{W}_N} \) algebras. In both examples the higher-spin generators of the \( \mathcal{W} \)-algebras are Virasoro primaries. We eventually discuss how to relate our basis to a non-primary quadratic basis that was previously discussed in literature.

Keywords

Field Theories in Lower Dimensions Chern-Simons Theories Conformal and W Symmetry 

References

  1. [1]
    M.P. Blencowe, A Consistent Interacting Massless Higher Spin Field Theory In D = (2 + 1), Class. Quant. Grav. 6 (1989) 443 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 243 (1990) 378 [SPIRES].ADSMathSciNetGoogle Scholar
  3. [3]
    M.A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS d, Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [SPIRES].ADSMathSciNetGoogle Scholar
  4. [4]
    X. Bekaert, S. Cnockaert, C. Iazeolla and M.A. Vasiliev, Nonlinear higher spin theories in various dimensions, hep-th/0503128 [SPIRES].
  5. [5]
    C. Iazeolla, On the Algebraic Structure of Higher-Spin Field Equations and New Exact Solutions, arXiv:0807.0406 [SPIRES].
  6. [6]
    R.R. Metsaev, Cubic interaction vertices for massive and massless higher spin fields, Nucl. Phys. B 759 (2006) 147 [hep-th/0512342] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  7. [7]
    R. Manvelyan, K. Mkrtchyan and W. Rühl, General trilinear interaction for arbitrary even higher spin gauge fields, Nucl. Phys. B 836 (2010) 204 [arXiv:1003.2877] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    A. Sagnotti and M. Taronna, String Lessons for Higher-Spin Interactions, Nucl. Phys. B 842 (2011) 299 [arXiv:1006.5242] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    X. Bekaert, N. Boulanger and P. Sundell, How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples, arXiv:1007.0435 [SPIRES].
  10. [10]
    M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [SPIRES].CrossRefzbMATHADSMathSciNetGoogle Scholar
  11. [11]
    M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [gr-qc/9302012] [SPIRES].ADSGoogle Scholar
  12. [12]
    S.F. Prokushkin and M.A. Vasiliev, Higher-spin gauge interactions for massive matter fields in 3D AdS space-time, Nucl. Phys. B 545 (1999) 385 [hep-th/9806236] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    B. Sundborg, Stringy gravity, interacting tensionless strings and massless higher spins, Nucl. Phys. Proc. Suppl. 102 (2001) 113 [hep-th/0103247] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  15. [15]
    E. Witten, Spacetime Reconstruction, talk at the John Schwarz 60th birthday symposium, November 32001, http://theory.caltech.edu/jhs60/witten/1.html.
  16. [16]
    A. Mikhailov, Notes on higher spin symmetries, hep-th/0201019 [SPIRES].
  17. [17]
    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [SPIRES].ADSMathSciNetGoogle Scholar
  18. [18]
    S. Giombi and X. Yin, Higher Spin Gauge Theory and Holography: The Three-Point Functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  19. [19]
    S. Giombi and X. Yin, Higher Spins in AdS and Twistorial Holography, JHEP 04 (2011) 086 [arXiv:1004.3736] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  20. [20]
    S. Giombi and X. Yin, On Higher Spin Gauge Theory and the Critical O(N) Model, arXiv:1105.4011 [SPIRES].
  21. [21]
    R.d.M. Koch, A. Jevicki, K. Jin and J.P. Rodrigues, AdS 4 /CFT 3 Construction from Collective Fields, Phys. Rev. D 83 (2011) 025006 [arXiv:1008.0633] [SPIRES].ADSGoogle Scholar
  22. [22]
    M.R. Douglas, L. Mazzucato and S.S. Razamat, Holographic dual of free field theory, Phys. Rev. D 83 (2011) 071701 [arXiv:1011.4926] [SPIRES].ADSGoogle Scholar
  23. [23]
    X. Bekaert, E. Joung and J. Mourad, Effective action in a higher-spin background, JHEP 02 (2011) 048 [arXiv:1012.2103] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  24. [24]
    A. Jevicki, K. Jin and Q. Ye, Collective Dipole Model of AdS/CFT and Higher Spin Gravity, arXiv:1106.3983 [SPIRES].
  25. [25]
    M. Henneaux and S.-J. Rey, Nonlinear W Algebra as Asymptotic Symmetry of Three-Dimensional Higher Spin Anti-de Sitter Gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  26. [26]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [SPIRES].CrossRefzbMATHADSMathSciNetGoogle Scholar
  28. [28]
    P. Bouwknegt and K. Schoutens, W symmetry in conformal field theory, Phys. Rept. 223 (1993) 183 [hep-th/9210010] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  29. [29]
    M.R. Gaberdiel, R. Gopakumar and A. Saha, Quantum W-symmetry in AdS 3, JHEP 02 (2011) 004 [arXiv:1009.6087] [SPIRES].ADSMathSciNetGoogle Scholar
  30. [30]
    M.R. Gaberdiel and R. Gopakumar, An AdS 3 Dual for Minimal Model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [SPIRES].ADSGoogle Scholar
  31. [31]
    M.R. Gaberdiel and T. Hartman, Symmetries of Holographic Minimal Models, JHEP 05 (2011) 031 [arXiv:1101.2910] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  32. [32]
    M.R. Gaberdiel, R. Gopakumar, T. Hartman and S. Raju, Partition Functions of Holographic Minimal Models, JHEP 08 (2011) 077 [arXiv:1106.1897] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    C.-M. Chang and X. Yin, Higher Spin Gravity with Matter in AdS 3 and Its CFT Dual, arXiv:1106.2580 [SPIRES].
  34. [34]
    E. Kiritsis and V. Niarchos, Large-N limits of 2d CFTs, Quivers and AdS 3 duals, JHEP 04 (2011) 113 [arXiv:1011.5900] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  35. [35]
    C. Ahn, The Large-N ’t Hooft Limit of Coset Minimal Models, arXiv:1106.0351 [SPIRES].
  36. [36]
    M.R. Gaberdiel and C. Vollenweider, Minimal Model Holography for SO(2N), arXiv:1106.2634 [SPIRES].
  37. [37]
    O. Coussaert, M. Henneaux and P. van Driel, The Asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant, Class. Quant. Grav. 12 (1995) 2961 [gr-qc/9506019] [SPIRES].CrossRefzbMATHADSGoogle Scholar
  38. [38]
    M. Bañados, Global charges in Chern-Simons field theory and the (2 + 1) black hole, Phys. Rev. D 52 (1996) 5816 [hep-th/9405171] [SPIRES].Google Scholar
  39. [39]
    M. Bañados, Three-dimensional quantum geometry and black holes, hep-th/9901148 [SPIRES].
  40. [40]
    L.A. Dickey, Soliton Equations and Hamiltonian Systems, World Scientific, Singapore (2003).zbMATHGoogle Scholar
  41. [41]
    J. Balog, L. Fehér, L. O’Raifeartaigh, P. Forgács and A. Wipf, Toda theory and W-algebra from a gauged WZNW point of view, Ann. Phys. 203 (1990) 76 [SPIRES].CrossRefzbMATHADSGoogle Scholar
  42. [42]
    L. Fehér, L. O’Raifeartaigh, P. Ruelle, I. Tsutsui and A. Wipf, On Hamiltonian reductions of the Wess-Zumino-Novikov-Witten theories, Phys. Rept. 222 (1992) 1 [SPIRES].CrossRefADSGoogle Scholar
  43. [43]
    E. Bergshoeff, M.P. Blencowe and K.S. Stelle, Area Preserving Diffeomorphisms And Higher Spin Algebra, Commun. Math. Phys. 128 (1990) 213 [SPIRES].CrossRefzbMATHADSMathSciNetGoogle Scholar
  44. [44]
    C.N. Pope, L.J. Romans and X. Shen, W And The Racah-Wigner Algebra, Nucl. Phys. B 339 (1990) 191 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  45. [45]
    M.A. Vasiliev, Higher spin algebras and quantization on the sphere and hyperboloid, Int. J. Mod. Phys. A 6 (1991) 1115 [SPIRES].ADSMathSciNetGoogle Scholar
  46. [46]
    E.S. Fradkin and V.Y. Linetsky, Infinite dimensional generalizations of simple Lie algebras, Mod. Phys. Lett. A 5 (1990) 1967 [SPIRES].ADSMathSciNetGoogle Scholar
  47. [47]
    M. Bordemann, J. Hoppe and P. Schaller, Infinite dimensional matrix algebras, Phys. Lett. B 232 (1989) 199 [SPIRES].ADSMathSciNetGoogle Scholar
  48. [48]
    A. Achúcarro and P.K. Townsend, A Chern-Simons Action for Three-Dimensional anti-de Sitter Supergravity Theories, Phys. Lett. B 180 (1986) 89 [SPIRES].ADSGoogle Scholar
  49. [49]
    E. Witten, (2 + 1)-Dimensional Gravity as an Exactly Soluble System, Nucl. Phys. B 311 (1988) 46 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  50. [50]
    J.M. Figueroa-O’Farrill, J. Mas and E. Ramos, A One parameter family of Hamiltonian structures for the KP hierarchy and a continuous deformation of the nonlinear W(KP) algebra, Commun. Math. Phys. 158 (1993) 17 [hep-th/9207092] [SPIRES].CrossRefzbMATHADSMathSciNetGoogle Scholar
  51. [51]
    J.M. Figueroa-O’Farrill, J. Mas and E. Ramos, The Topography of W type algebras, Phys. Lett. B 299 (1993) 41 [hep-th/9208077] [SPIRES].ADSMathSciNetGoogle Scholar
  52. [52]
    B. Khesin and I. Zakharevich, Poisson Lie group of pseudodifferential symbols and fractional KP-KdV hierarchies, hep-th/9311125 [SPIRES].
  53. [53]
    B. Khesin and I. Zakharevich, Poisson-Lie group of pseudodifferential symbols, Commun. Math. Phys. 171 (1995) 475 [hep-th/9312088] [SPIRES].CrossRefzbMATHADSMathSciNetGoogle Scholar
  54. [54]
    E. Sezgin and P. Sundell, An exact solution of 4D higher-spin gauge theory, Nucl. Phys. B 762 (2007) 1 [hep-th/0508158] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  55. [55]
    C. Iazeolla, E. Sezgin and P. Sundell, Real Forms of Complex Higher Spin Field Equations and New Exact Solutions, Nucl. Phys. B 791 (2008) 231 [arXiv:0706.2983] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  56. [56]
    V.E. Didenko and M.A. Vasiliev, Static BPS black hole in 4 d higher-spin gauge theory, Phys. Lett. B 682 (2009) 305 [arXiv:0906.3898] [SPIRES].ADSMathSciNetGoogle Scholar
  57. [57]
    V.E. Didenko, A.S. Matveev and M.A. Vasiliev, BTZ black hole as solution of 3d higher spin gauge theory, Theor. Math. Phys. 153 (2007) 1487 [hep-th/0612161] [SPIRES].CrossRefzbMATHGoogle Scholar
  58. [58]
    A. Castro, A. Lepage-Jutier and A. Maloney, Higher Spin Theories in AdS 3 and a Gravitational Exclusion Principle, JHEP 01 (2011) 142 [arXiv:1012.0598] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  59. [59]
    M. Gutperle and P. Kraus, Higher Spin Black Holes, JHEP 05 (2011) 022 [arXiv:1103.4304] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  60. [60]
    M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Spacetime Geometry in Higher Spin Gravity, arXiv:1106.4788 [SPIRES].
  61. [61]
    D. Sorokin, Introduction to the classical theory of higher spins, AIP Conf. Proc. 767 (2005) 172 [hep-th/0405069] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  62. [62]
    N. Bouatta, G. Compère and A. Sagnotti, An introduction to free higher-spin fields, hep-th/0409068 [SPIRES].
  63. [63]
    D. Francia and A. Sagnotti, Higher-spin geometry and string theory, J. Phys. Conf. Ser. 33 (2006) 57 [hep-th/0601199] [SPIRES].CrossRefADSGoogle Scholar
  64. [64]
    A. Campoleoni, Metric-like Lagrangian Formulations for Higher-Spin Fields of Mixed Symmetry, Riv. Nuovo Cim. 033 (2010) 123 [arXiv:0910.3155] [SPIRES].Google Scholar
  65. [65]
    D. Francia, Low-spin models for higher-spin Lagrangians, Prog. Theor. Phys. Suppl. 188 (2011) 94 [arXiv:1103.0683] [SPIRES].CrossRefzbMATHADSGoogle Scholar
  66. [66]
    M.A. Vasiliev, ‘Gauge’ form of description of massless fields with arbitrary spin (in Russian), Yad. Fiz. 32 (1980) 855 [Sov. J. Nucl. Phys. 32 (1980) 439] [SPIRES].Google Scholar
  67. [67]
    V.E. Lopatin and M.A. Vasiliev, Free massless bosonic fields of arbitrary spin in d-dimensional de Sitter space, Mod. Phys. Lett. A 3 (1988) 257 [SPIRES].ADSMathSciNetGoogle Scholar
  68. [68]
    B. Chen, J. Long and J.-b. Wu, Spin-3 Topological Massive Gravity, arXiv:1106.5141 [SPIRES].
  69. [69]
    A. Bagchi, S. Lal, A. Saha and B. Sahoo, Topologically Massive Higher Spin Gravity, arXiv:1107.0915 [SPIRES].
  70. [70]
    C. Aragone and S. Deser, Higher spin vierbein gauge fermions and hypergravities, Nucl. Phys. B 170 (1980) 329 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  71. [71]
    M.A. Vasiliev, Free massless fermionic fields of arbitrary spin in d-dimensional de Sitter space, Nucl. Phys. B 301 (1988) 26 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  72. [72]
    S. Carlip, Conformal field theory, (2 + 1)-dimensional gravity and the BTZ black hole, Class. Quant. Grav. 22 (2005) R85 [gr-qc/0503022] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  73. [73]
    M. Bañados, K. Bautier, O. Coussaert, M. Henneaux and M. Ortiz, Anti-de Sitter/CFT correspondence in three-dimensional supergravity, Phys. Rev. D 58 (1998) 085020 [hep-th/9805165] [SPIRES].ADSGoogle Scholar
  74. [74]
    M. Henneaux, L. Maoz and A. Schwimmer, Asymptotic dynamics and asymptotic symmetries of three-dimensional extended AdS supergravity, Annals Phys. 282 (2000) 31 [hep-th/9910013] [SPIRES].CrossRefzbMATHADSMathSciNetGoogle Scholar
  75. [75]
    F.A. Bais, T. Tjin and P. van Driel, Covariantly coupled chiral algebras, Nucl. Phys. B 357 (1991) 632 [SPIRES].CrossRefADSGoogle Scholar
  76. [76]
    J. De Boer and J. Goeree, Covariant W gravity and its moduli space from gauge theory, Nucl. Phys. B 401 (1993) 369 [hep-th/9206098] [SPIRES].CrossRefADSGoogle Scholar
  77. [77]
    E.B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Trans. Am. Math. Soc. 6 (1957) 111.zbMATHGoogle Scholar
  78. [78]
    A.M. Polyakov, Gauge Transformations and Diffeomorphisms, Int. J. Mod. Phys. A 5 (1990) 833 [SPIRES].ADSMathSciNetGoogle Scholar
  79. [79]
    M. Bershadsky, Conformal field theories via Hamiltonian reduction, Commun. Math. Phys. 139 (1991) 71 [SPIRES].CrossRefzbMATHADSMathSciNetGoogle Scholar
  80. [80]
    E.S. Fradkin and M.A. Vasiliev, Candidate to the Role of Higher Spin Symmetry, Ann. Phys. 177 (1987) 63 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  81. [81]
    E. Sezgin and P. Sundell, Geometry and Observables in Vasiliev’s Higher Spin Gravity, arXiv:1103.2360 [SPIRES].
  82. [82]
    J.A. de Azcarraga, A.J. Macfarlane, A.J. Mountain and J.C. Perez Bueno, Invariant tensors for simple groups, Nucl. Phys. B 510 (1998) 657 [physics/9706006].CrossRefADSGoogle Scholar
  83. [83]
    B. Khesin and F. Malikov, Universal Drinfeld-Sokolov reduction and matrices of complex size, Commun. Math. Phys. 175 (1996) 113 [hep-th/9405116] [SPIRES].CrossRefzbMATHADSMathSciNetGoogle Scholar
  84. [84]
    L. Brink and M.A. Vasiliev, Generalized Toda field theories, Nucl. Phys. B 457 (1995) 273 [hep-th/9509045] [SPIRES].CrossRefADSMathSciNetGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Max-Planck-Institut für GravitationsphysikAlbert-Einstein-InstitutGolmGermany

Personalised recommendations