Advertisement

Journal of High Energy Physics

, 2011:104 | Cite as

Practical improvements and merging of Powheg simulations for vector boson production

  • Simone Alioli
  • Keith Hamilton
  • Emanuele Re
Open Access
Article

Abstract

In this article we generalise Powheg next-to-leading order parton shower (Nlops) simulations of vector boson production and vector boson production in association with a single jet, to give matrix element corrected Menlops simulations. In so doing we extend and provide, for the first time, an exact and faithful implementation of the Menlops formalism in hadronic collisions. We also consider merging the resulting event samples according to a phase space partition defined in terms of an effective jet clustering scale. The merging scale is restricted such that the component generated by the associated production simulation does not impact on the NLO accuracy of inclusive vector boson production observables. The dependence of the predictions on the unphysical merging scale is demonstrated. Comparisons with Tevatron and LHC data are presented.

Keywords

Phenomenological Models Hadronic Colliders Jets 

References

  1. [1]
    S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    M.L. Mangano, M. Moretti and R. Pittau, Multijet matrix elements and shower evolution in hadronic collisions: \( Wb\bar{b} + n \) jets as a case study, Nucl. Phys. B 632 (2002) 343 [hep-ph/0108069] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    L. Lönnblad, Correcting the colour-dipole cascade model with fixed order matrix elements, JHEP 05 (2002) 046 [hep-ph/0112284] [SPIRES].CrossRefGoogle Scholar
  4. [4]
    F. Krauss, Matrix elements and parton showers in hadronic interactions, JHEP 08 (2002) 015 [hep-ph/0205283] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    S. Mrenna and P. Richardson, Matching matrix elements and parton showers with HERWIG and PYTHIA, JHEP 05 (2004) 040 [hep-ph/0312274] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with parton shower simulations: the Powheg method, JHEP 11 (2007) 070 [arXiv:0709.2092] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the Powheg BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    S. Hoche, F. Krauss, M. Schonherr and F. Siegert, Automating the Powheg method in Sherpa, JHEP 04 (2011) 024 [arXiv:1008.5399] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    R. Frederix et al., Scalar and pseudoscalar Higgs production in association with a top-antitop pair, Phys. Lett. B 701 (2011) 427 [arXiv:1104.5613] [SPIRES].ADSGoogle Scholar
  12. [12]
    R. Frederix et al., W and Z/γ * boson production in association with a bottom-antibottom pair, JHEP 09 (2011) 061 [arXiv:1106.6019] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    S. Alioli, K. Hamilton, P. Nason, C. Oleari and E. Re, Jet pair production in Powheg, JHEP 04 (2011) 081 [arXiv:1012.3380] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    S. Alioli, P. Nason, C. Oleari and E. Re, Vector boson plus one jet production in Powheg, JHEP 01 (2011) 095 [arXiv:1009.5594] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    A. Kardos, C. Papadopoulos and Z. Trócsányi, Top quark pair production in association with a jet with NLO parton showering, arXiv:1101.2672 [SPIRES].
  16. [16]
    T. Melia, P. Nason, R. Rontsch and G. Zanderighi, W + W + plus dijet production in the Powheg BOX, Eur. Phys. J. C 71 (2011) 1670 [arXiv:1102.4846] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    C. Oleari and L. Reina, \( Wb\bar{b} \) production in Powheg, arXiv:1105.4488 [SPIRES].
  18. [18]
    Z. Nagy and D.E. Soper, Matching parton showers to NLO computations, JHEP 10 (2005) 024 [hep-ph/0503053] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    W.T. Giele, D.A. Kosower and P.Z. Skands, A simple shower and matching algorithm, Phys. Rev. D 78 (2008) 014026 [arXiv:0707.3652] [SPIRES].ADSGoogle Scholar
  20. [20]
    N. Lavesson and L. Lönnblad, Extending CKKW-merging to one-loop matrix elements, JHEP 12 (2008) 070 [arXiv:0811.2912] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    C.W. Bauer, F.J. Tackmann and J. Thaler, GenEvA. I. A new framework for event generation, JHEP 12 (2008) 010 [arXiv:0801.4026] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    C.W. Bauer, F.J. Tackmann and J. Thaler, GenEvA (II): a phase space generator from a reweighted parton shower, JHEP 12 (2008) 011 [arXiv:0801.4028] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    W.T. Giele, D.A. Kosower and P.Z. Skands, Higher-order corrections to timelike jets, arXiv:1102.2126 [SPIRES].
  24. [24]
    K. Hamilton and P. Nason, Improving NLO-parton shower matched simulations with higher order matrix elements, JHEP 06 (2010) 039 [arXiv:1004.1764] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    S. Hoche, F. Krauss, M. Schonherr and F. Siegert, NLO matrix elements and truncated showers, JHEP 08 (2011) 123 [arXiv:1009.1127] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for Z pair hadroproduction, JHEP 08 (2006) 077 [hep-ph/0606275] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    M.R. Whalley, D. Bourilkov and R.C. Group, The Les Houches Accord PDFs (LHAPDF) and Lhaglue, hep-ph/0508110 [SPIRES].
  29. [29]
    A. Buckley et al., Rivet user manual, arXiv:1003.0694 [SPIRES].
  30. [30]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [SPIRES].ADSGoogle Scholar
  31. [31]
    R. Corke and T. Sjöstrand, Improved parton showers at large transverse momenta, Eur. Phys. J. C 69 (2010) 1 [arXiv:1003.2384] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    R. Corke and T. Sjöstrand, Interleaved parton showers and tuning prospects, JHEP 03 (2011) 032 [arXiv:1011.1759] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    R. Corke and T. Sjöstrand, Multiparton interactions with an x-dependent proton size, JHEP 05 (2011) 009 [arXiv:1101.5953] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    M.H. Seymour, A simple prescription for first order corrections to quark scattering and annihilation processes, Nucl. Phys. B 436 (1995) 443 [hep-ph/9410244] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    M.H. Seymour, Matrix element corrections to parton shower algorithms, Comp. Phys. Commun. 90 (1995) 95 [hep-ph/9410414] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    G. Miu and T. Sjöstrand, W production in an improved parton shower approach, Phys. Lett. B 449 (1999) 313 [hep-ph/9812455] [SPIRES].ADSGoogle Scholar
  37. [37]
    G. Corcella and M.H. Seymour, Initial state radiation in simulations of vector boson production at hadron colliders, Nucl. Phys. B 565 (2000) 227 [hep-ph/9908388] [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
    G. Bozzi, S. Catani, G. Ferrera, D. de Florian and M. Grazzini, Production of Drell-Yan lepton pairs in hadron collisions: transverse-momentum resummation at next-to-next-to-leading logarithmic accuracy, Phys. Lett. B 696 (2011) 207 [arXiv:1007.2351] [SPIRES].ADSGoogle Scholar
  39. [39]
    M. Rubin, G.P. Salam and S. Sapeta, Giant QCD K-factors beyond NLO, JHEP 09 (2010) 084 [arXiv:1006.2144] [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    K. Hamilton, P. Richardson and J. Tully, A positive-weight next-to-leading order Monte Carlo simulation of Drell-Yan vector boson production, JHEP 10 (2008) 015 [arXiv:0806.0290] [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    K. Hamilton, P. Richardson and J. Tully, A positive-weight next-to-leading order Monte Carlo simulation for Higgs boson production, JHEP 04 (2009) 116 [arXiv:0903.4345] [SPIRES].CrossRefADSGoogle Scholar
  42. [42]
    K. Hamilton, A positive-weight next-to-leading order simulation of weak boson pair production, JHEP 01 (2011) 009 [arXiv:1009.5391] [SPIRES].CrossRefADSGoogle Scholar
  43. [43]
    K. Hamilton, P. Richardson and J. Tully, A modified CKKW matrix element merging approach to angular-ordered parton showers, JHEP 11 (2009) 038 [arXiv:0905.3072] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    R.K. Ellis and S. Veseli, W and Z transverse momentum distributions: resummation in q T space, Nucl. Phys. B 511 (1998) 649 [hep-ph/9706526] [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    Y.L. Dokshitzer, D. Diakonov and S.I. Troian, Hard processes in quantum chromodynamics, Phys. Rept. 58 (1980) 269 [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    P. Nason, MINT: a computer program for adaptive Monte Carlo integration and generation of unweighted distributions, arXiv:0709.2085 [SPIRES].
  47. [47]
    M. Dobbs and J.B. Hansen, The HepMC C++ Monte Carlo event record for high energy physics, Comput. Phys. Commun. 134 (2001) 41 [SPIRES].CrossRefADSGoogle Scholar
  48. [48]
    CDF collaboration, T.A. Aaltonen et al., Measurement of dσ/dy of Drell-Yan e + e pairs in the Z mass region from \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Lett. B 692 (2010) 232 [arXiv:0908.3914] [SPIRES].ADSGoogle Scholar
  49. [49]
    DØ collaboration, V.M. Abazov et al., Precise study of the Z/γ * boson transverse momentum distribution in ppbar collisions using a novel technique, Phys. Rev. Lett. 106 (2011) 122001 [arXiv:1010.0262] [SPIRES].CrossRefADSGoogle Scholar
  50. [50]
    DØ collaboration, B. Abbott et al., Differential cross-section for W boson production as a function of transverse momentum in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.8 \) TeV, Phys. Lett. B 513 (2001) 292 [hep-ex/0010026] [SPIRES].ADSGoogle Scholar
  51. [51]
    DØ collaboration, V.M. Abazov et al., Measurement of the normalized Z* → μ + μ transverse momentum distribution in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Lett. B 693 (2010) 522 [arXiv:1006.0618] [SPIRES].ADSGoogle Scholar
  52. [52]
    CDF — Run II collaboration, T. Aaltonen et al., Measurement of inclusive jet cross-sections in Z*(→ e + e ) + jets production in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 100 (2008) 102001 [arXiv:0711.3717] [SPIRES].CrossRefADSGoogle Scholar
  53. [53]
    DØ collaboration, V.M. Abazov et al., Measurement of Z/γ *+ jet + X angular distributions in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Lett. B 682 (2010) 370 [arXiv:0907.4286] [SPIRES].ADSGoogle Scholar
  54. [54]
    ATLAS collaboration, G. Aad et al., Measurement of the production cross section for W-bosons in association with jets in pp collisions at sqrts = 7 TeV with the ATLAS detector, Phys. Lett. B 698 (2011) 325 [arXiv:1012.5382] [SPIRES].ADSGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Deutsches Elektronen-Synchrotron DESYZeuthenGermany
  2. 2.INFN, Sezione di Milano BicoccaMilanItaly
  3. 3.Institute for Particle Physics Phenomenology, Department of PhysicsUniversity of DurhamDurhamU.K.

Personalised recommendations