Journal of High Energy Physics

, 2011:97 | Cite as

Simple models for the top asymmetry: constraints and predictions

Article

Abstract

We perform a comprehensive study of the allowed range for the Tevatron \( t\bar{t} \) forward-backward asymmetries in six representative new physics models: a flavour-changing Z′ boson, a scalar isodoublet, a W′ boson, a heavy axigluon, a colour-triplet and a colour-sextet scalar. We devote special attention to the constraints from the \( t\bar{t} \) tail at LHC on the parameter space, which will be dramatic if the measurements agree with the Standard Model prediction, specially for Z′ and W′ bosons. We also study the predictions for the charge asymmetries at LHC and compare several proposed definitions.

Keywords

Beyond Standard Model Hadronic Colliders 

References

  1. [1]
    CDF collaboration, F. Abe et al., Observation of top quark production in \( \bar{p}p \) collisions, Phys. Rev. Lett. 74 (1995) 2626 [hep-ex/9503002] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    DØ collaboration, S. Abachi et al., Observation of the top quark, Phys. Rev. Lett. 74 (1995) 2632 [hep-ex/9503003] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    DØ collaboration, V.M. Abazov et al., First measurement of the forward-backward charge asymmetry in top quark pair production, Phys. Rev. Lett. 100 (2008) 142002 [arXiv:0712.0851] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    CDF collaboration, T. Aaltonen et al., Forward-backward asymmetry in top quark production in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 101 (2008) 202001 [arXiv:0806.2472] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    CDF collaboration, T. Aaltonen et al., Evidence for a mass dependent forward-backward asymmetry in top quark pair production, Phys. Rev. D 83 (2011) 112003 [arXiv:1101.0034] [SPIRES].ADSGoogle Scholar
  6. [6]
    J.A. Aguilar-Saavedra and M. Pérez-Victoria, Probing the tevatron \( t\bar{t} \) asymmetry at LHC, JHEP 05 (2011) 034 [arXiv:1103.2765] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    P. Ferrario and G. Rodrigo, Massive color-octet bosons and the charge asymmetries of top quarks at hadron colliders, Phys. Rev. D 78 (2008) 094018 [arXiv:0809.3354] [SPIRES].ADSGoogle Scholar
  8. [8]
    P. Ferrario and G. Rodrigo, Constraining heavy colored resonances from top-antitop quark events, Phys. Rev. D 80 (2009) 051701 [arXiv:0906.5541] [SPIRES].ADSGoogle Scholar
  9. [9]
    P.H. Frampton, J. Shu and K. Wang, Axigluon as possible explanation for \( p\bar{p} \to t\bar{t} \) forward-backward asymmetry, Phys. Lett. B 683 (2010) 294 [arXiv:0911.2955] [SPIRES].ADSGoogle Scholar
  10. [10]
    A. Djouadi, G. Moreau, F. Richard and R.K. Singh, The forward-backward asymmetry of top quark production at the Tevatron in warped extra dimensional models, Phys. Rev. D 82 (2010) 071702 [arXiv:0906.0604] [SPIRES].ADSGoogle Scholar
  11. [11]
    A. Djouadi, G. Moreau and F. Richard, Forward-backward asymmetries of the bottom and top quarks in warped extra-dimensional models: LHC predictions from the LEP and Tevatron anomalies, Phys. Lett. B 701 (2011) 458 [arXiv:1105.3158] [SPIRES].ADSGoogle Scholar
  12. [12]
    C. Delaunay, O. Gedalia, S.J. Lee, G. Perez and E. Ponton, Ultra visible warped model from flavor triviality & improved naturalness, Phys. Rev. D 83 (2011) 115003 [arXiv:1007.0243] [SPIRES].ADSGoogle Scholar
  13. [13]
    C. Delaunay, O. Gedalia, S.J. Lee, G. Perez and E. Ponton, Extraordinary phenomenology from warped flavor triviality, Phys. Lett. B 703 (2011) 486 [arXiv:1101.2902] [SPIRES].ADSGoogle Scholar
  14. [14]
    G. Burdman, L. de Lima and R.D. Matheus, New strongly coupled sector at the Tevatron and the LHC, Phys. Rev. D 83 (2011) 035012 [arXiv:1011.6380] [SPIRES].ADSGoogle Scholar
  15. [15]
    E. Alvarez, L. Da Rold and A. Szynkman, A composite Higgs model analysis of forward-backward asymmetries in the production of tops at Tevatron and bottoms at LEP and SLC, JHEP 05 (2011) 070 [arXiv:1011.6557] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    Y. Bai, J.L. Hewett, J. Kaplan and T.G. Rizzo, LHC predictions from a Tevatron anomaly in the top quark forward-backward asymmetry, JHEP 03 (2011) 003 [arXiv:1101.5203] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    R. Barceló, A. Carmona, M. Masip and J. Santiago, Gluon excitations in \( t\bar{t} \) production at hadron colliders, Phys. Rev. D 84 (2011) 014024 [arXiv:1105.3333] [SPIRES].ADSGoogle Scholar
  18. [18]
    U. Haisch and S. Westhoff, Massive color-octet bosons: bounds on effects in top-quark pair production, arXiv:1106.0529 [SPIRES].
  19. [19]
    S. Jung, H. Murayama, A. Pierce and J.D. Wells, Top quark forward-backward asymmetry from new t-channel physics, Phys. Rev. D 81 (2010) 015004 [arXiv:0907.4112] [SPIRES].ADSGoogle Scholar
  20. [20]
    S. Jung, A. Pierce and J.D. Wells, Top quark asymmetry from a non-Abelian horizontal symmetry, Phys. Rev. D 83 (2011) 114039 [arXiv:1103.4835] [SPIRES].ADSGoogle Scholar
  21. [21]
    S. Jung, A. Pierce and J.D. Wells, Top quark asymmetry and dijet resonances, arXiv:1104.3139 [SPIRES].
  22. [22]
    J. Cao, L. Wang, L. Wu and J.M. Yang, Top quark forward-backward asymmetry, FCNC decays and like-sign pair production as a joint probe of new physics, arXiv:1101.4456 [SPIRES].
  23. [23]
    E.L. Berger, Q.-H. Cao, C.-R. Chen, C.S. Li and H. Zhang, Top quark forward-backward asymmetry and same-sign top quark pairs, Phys. Rev. Lett. 106 (2011) 201801 [arXiv:1101.5625] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    B. Bhattacherjee, S.S. Biswal and D. Ghosh, Top quark forward-backward asymmetry at Tevatron and its implications at the LHC, Phys. Rev. D 83 (2011) 091501 [arXiv:1102.0545] [SPIRES].ADSGoogle Scholar
  25. [25]
    K. Cheung, W.-Y. Keung and T.-C. Yuan, Top quark forward-backward asymmetry, Phys. Lett. B 682 (2009) 287 [arXiv:0908.2589] [SPIRES].ADSGoogle Scholar
  26. [26]
    K. Cheung and T.-C. Yuan, Top quark forward-backward asymmetry in the large invariant mass region, Phys. Rev. D 83 (2011) 074006 [arXiv:1101.1445] [SPIRES].ADSGoogle Scholar
  27. [27]
    Q.-H. Cao, D. McKeen, J.L. Rosner, G. Shaughnessy and C.E.M. Wagner, Forward-backward asymmetry of top quark pair production, Phys. Rev. D 81 (2010) 114004 [arXiv:1003.3461] [SPIRES].ADSGoogle Scholar
  28. [28]
    J. Shelton and K.M. Zurek, A theory for maximal flavor violation, Phys. Rev. D 83 (2011) 091701 [arXiv:1101.5392] [SPIRES].ADSGoogle Scholar
  29. [29]
    J. Shu, T.M.P. Tait and K. Wang, Explorations of the top quark forward-backward asymmetry at the Tevatron, Phys. Rev. D 81 (2010) 034012 [arXiv:0911.3237] [SPIRES].ADSGoogle Scholar
  30. [30]
    A. Arhrib, R. Benbrik and C.-H. Chen, Forward-backward asymmetry of top quark in diquark models, Phys. Rev. D 82 (2010) 034034 [arXiv:0911.4875] [SPIRES].ADSGoogle Scholar
  31. [31]
    I. Dorsner, S. Fajfer, J.F. Kamenik and N. Kosnik, Light colored scalars from grand unification and the forward-backward asymmetry in top quark pair production, Phys. Rev. D 81 (2010) 055009 [arXiv:0912.0972] [SPIRES].ADSGoogle Scholar
  32. [32]
    I. Dorsner, S. Fajfer, J.F. Kamenik and N. Kosnik, Light colored scalar as messenger of up-quark flavor dynamics in Grand Unified Theories, Phys. Rev. D 82 (2010) 094015 [arXiv:1007.2604] [SPIRES].ADSGoogle Scholar
  33. [33]
    K.M. Patel and P. Sharma, Forward-backward asymmetry in top quark production from light colored scalars in SO(10) model, JHEP 04 (2011) 085 [arXiv:1102.4736] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    Z. Ligeti, G.M. Tavares and M. Schmaltz, Explaining the \( t\bar{t} \) forward-backward asymmetry without dijet or flavor anomalies, JHEP 06 (2011) 109 [arXiv:1103.2757] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    B. Grinstein, A.L. Kagan, M. Trott and J. Zupan, Forward-backward asymmetry in \( t\bar{t} \) production from flavour symmetries, Phys. Rev. Lett. 107 (2011) 012002 [arXiv:1102.3374] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    J. Cao, Z. Heng, L. Wu and J.M. Yang, Top quark forward-backward asymmetry at the Tevatron: a comparative study in different new physics models, Phys. Rev. D 81 (2010) 014016 [arXiv:0912.1447] [SPIRES].ADSGoogle Scholar
  37. [37]
    D. Choudhury, R.M. Godbole, S.D. Rindani and P. Saha, Top polarization, forward-backward asymmetry and new physics, Phys. Rev. D 84 (2011) 014023 [arXiv:1012.4750] [SPIRES].ADSGoogle Scholar
  38. [38]
    M.I. Gresham, I.-W. Kim and K.M. Zurek, On models of new physics for the Tevatron top A FB, Phys. Rev. D 83 (2011) 114027 [arXiv:1103.3501] [SPIRES].ADSGoogle Scholar
  39. [39]
    D.-W. Jung, P. Ko, J.S. Lee and S.-h. Nam, Model independent analysis of the forward-backward asymmetry of top quark production at the Tevatron, Phys. Lett. B 691 (2010) 238 [arXiv:0912.1105] [SPIRES].ADSGoogle Scholar
  40. [40]
    J.A. Aguilar-Saavedra, Effective four-fermion operators in top physics: a roadmap, Nucl. Phys. B 843 (2011) 638 [Erratum ibid. B 851 (2011) 443] [arXiv:1008.3562] [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    C. Zhang and S. Willenbrock, Effective-field-theory approach to top-quark production and decay, Phys. Rev. D 83 (2011) 034006 [arXiv:1008.3869] [SPIRES].ADSGoogle Scholar
  42. [42]
    C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni and G. Servant, Non-resonant new physics in top pair production at hadron colliders, JHEP 03 (2011) 125 [arXiv:1010.6304] [SPIRES].CrossRefADSGoogle Scholar
  43. [43]
    K. Blum et al., Implications of the CDF \( t\bar{t} \) forward-backward asymmetry for boosted top physics, Phys. Lett. B 702 (2011) 364 [arXiv:1102.3133] [SPIRES].ADSGoogle Scholar
  44. [44]
    C. Delaunay, O. Gedalia, Y. Hochberg, G. Perez and Y. Soreq, Implications of the CDF \( t\bar{t} \) forward-backward asymmetry for hard top physics, JHEP 08 (2011) 031 [arXiv:1103.2297] [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    CMS collaboration, Measurement of the charge asymmetry in top quark pair production with the CMS experiment, note CMS PA STOP-10-010, CERN, Geneva Switzerland (2011).Google Scholar
  46. [46]
    CMS collaboration, Search for resonances in semi-leptonic top-pair decays close to production threshold, note CMS PAS TOP-10-007, CERN, Geneva Switzerland (2011).Google Scholar
  47. [47]
    M.I. Gresham, I.-W. Kim and K.M. Zurek, Searching for top flavor violating resonances, Phys. Rev. D 84 (2011) 034025 [arXiv:1102.0018] [SPIRES].ADSGoogle Scholar
  48. [48]
    J.L. Hewett, J. Shelton, M. Spannowsky, T.M.P. Tait and M. Takeuchi, A FB t meets LHC, arXiv:1103.4618 [SPIRES].
  49. [49]
    J.A. Aguilar-Saavedra and M. Pérez-Victoria, No like-sign tops at Tevatron: constraints on extended models and implications for the \( t\bar{t} \) asymmetry, Phys. Lett. B 701 (2011) 93 [arXiv:1104.1385] [SPIRES].ADSGoogle Scholar
  50. [50]
    J.A. Aguilar-Saavedra and M.Pérez-Victoria, Asymmetries in \( t\bar{t} \) production: LHC versus Tevatron, arXiv:1105.4606 [SPIRES].
  51. [51]
    A.E. Nelson, T. Okui and T.S. Roy, A unified, flavor symmetric explanation for the \( t\bar{t} \) asymmetry and Wjj excess at CDF, arXiv:1104.2030 [SPIRES].
  52. [52]
    G. Zhu, B physics constraints on a flavor symmetric scalar model to account for the \( t\bar{t} \) asymmetry and Wjj excess at CDF, Phys. Lett. B 703 (2011) 142 [arXiv:1104.3227] [SPIRES].ADSGoogle Scholar
  53. [53]
    Q.-H. Cao et al., W plus two jets from a quasi-inert Higgs doublet, JHEP 08 (2011) 002 [arXiv:1104.4776] [SPIRES].CrossRefADSGoogle Scholar
  54. [54]
    K.S. Babu, M. Frank and S.K. Rai, Top quark asymmetry and Wjj excess at CDF from gauged flavor symmetry, Phys. Rev. Lett. 107 (2011) 061802 [arXiv:1104.4782] [SPIRES].CrossRefADSGoogle Scholar
  55. [55]
    F. del Aguila, J. de Blas and M. Pérez-Victoria, Electroweak limits on general new vector bosons, JHEP 09 (2010) 033 [arXiv:1005.3998] [SPIRES].CrossRefGoogle Scholar
  56. [56]
    CDF collaboration, T. Aaltonen et al., Search for like-sign top quark pair production at CDF with 6.1 fb −1, CDF note 10466, Fermilab, Batavia U.S.A. (2011).Google Scholar
  57. [57]
    CMS collaboration, S. Chatrchyan et al., Search for same-sign top-quark pair production at \( \sqrt {s} = 7 \) TeV and limits on flavour changing neutral currents in the top sector, JHEP 08 (2011) 005 [arXiv:1106.2142] [SPIRES].CrossRefADSGoogle Scholar
  58. [58]
    R. Barceló, A. Carmona, M. Masip and J. Santiago, Stealth gluons at hadron colliders, arXiv:1106.4054 [SPIRES].
  59. [59]
    G.M. Tavares and M. Schmaltz, Explaining the \( t\bar{t} \) asymmetry with a light axigluon, arXiv:1107.0978 [SPIRES].
  60. [60]
    E. Alvarez, L. Da Rold, J.I.S. Vietto and A. Szynkman, Phenomenology of a light gluon resonance in top-physics at Tevatron and LHC, JHEP 09 (2011) 007 [arXiv:1107.1473] [SPIRES].CrossRefADSGoogle Scholar
  61. [61]
    J.A. Aguilar-Saavedra and M. Pérez-Victoria, Shaping the top asymmetry, arXiv:1107.2120 [SPIRES].
  62. [62]
    K. Blum, Y. Hochberg and Y. Nir, Scalar-mediated \( t\bar{t} \) forward-backward asymmetry, arXiv:1107.4350 [SPIRES].
  63. [63]
    CDF collaboration, T. Aaltonen et al., Combination of CDF top quark pair production cross section measurements with up to 4.6 fb −1, CDF note 9913, Fermilab, Batavia U.S.A. (2009).Google Scholar
  64. [64]
    U. Langenfeld, S. Moch and P. Uwer, Measuring the running top-quark mass, Phys. Rev. D 80 (2009) 054009 [arXiv:0906.5273] [SPIRES].ADSGoogle Scholar
  65. [65]
    V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Renormalization-group improved predictions for top-quark pair production at hadron colliders, JHEP 09 (2010) 097 [arXiv:1003.5827] [SPIRES].CrossRefADSGoogle Scholar
  66. [66]
    J.A. Aguilar-Saavedra, Single top quark production at LHC with anomalous Wtb couplings, Nucl. Phys. B 804 (2008) 160 [arXiv:0803.3810] [SPIRES].CrossRefADSGoogle Scholar
  67. [67]
    J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [SPIRES].ADSGoogle Scholar
  68. [68]
    J.A. Aguilar-Saavedra and G.C. Branco, Probing top flavour-changing neutral scalar couplings at the CERN LHC, Phys. Lett. B 495 (2000) 347 [hep-ph/0004190] [SPIRES].ADSGoogle Scholar
  69. [69]
    D. Krohn, T. Liu, J. Shelton and L.-T. Wang, A polarized view of the top asymmetry, arXiv:1105.3743 [SPIRES].
  70. [70]
    V. Barger, W.-Y. Keung and C.-T. Yu, Asymmetric left-right model and the top pair forward-backward asymmetry, Phys. Rev. D 81 (2010) 113009 [arXiv:1002.1048] [SPIRES].ADSGoogle Scholar
  71. [71]
    V. Barger, W.-Y. Keung and C.-T. Yu, Tevatron asymmetry of tops in a W′, Z′ model, Phys. Lett. B 698 (2011) 243 [arXiv:1102.0279] [SPIRES].ADSGoogle Scholar
  72. [72]
    Y. Cui, Z. Han and M.D. Schwartz, Top condensation as a motivated explanation of the top forward-backward asymmetry, JHEP 07 (2011) 127 [arXiv:1106.3086] [SPIRES].CrossRefADSGoogle Scholar
  73. [73]
    C.-H. Chen, G. Cvetič and C.S. Kim, Forward-backward asymmetry of top quark in unparticle physics, Phys. Lett. B 694 (2011) 393 [arXiv:1009.4165] [SPIRES].ADSGoogle Scholar
  74. [74]
    E. Gabrielli and M. Raidal, Effective axial-vector coupling of gluon as an explanation to the top quark asymmetry, arXiv:1106.4553 [SPIRES].
  75. [75]
    DØ collaboration, V.M. Abazov et al., Forward-backward asymmetry in top quark-antiquark production, arXiv:1107.4995 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Departamento de Física Teórica y del Cosmos and CAFPEUniversidad de GranadaGranadaSpain

Personalised recommendations