Advertisement

Journal of High Energy Physics

, 2011:93 | Cite as

Correlations in Hawking radiation and the infall problem

  • Samir D. Mathur
  • Christopher J. Plumberg
Article

Abstract

It is sometimes believed that small quantum gravity effects can encode information as ‘delicate correlations’ in Hawking radiation, thus saving unitarity while maintaining a semi classical horizon. A recently derived inequality showed that this belief is incorrect: one must have order unity corrections to low energy evolution at the horizon (i.e. fuzzballs) to remove entanglement between radiation and the hole. In this paper we take several models of ‘small corrections’ and compute the entanglement entropy numerically; in each case this entanglement is seen to monotonically grow, in agreement with the general inequality. We also construct a model of ‘burning paper’, where the entanglement is found to rise and then return to zero, in agreement with the general arguments of Page. We then note that the fuzzball structure of string microstates offers a version of ‘complementarity’. Low energy evolution is modified by order unity, resolving the information problem, while for high energy infalling modes (E ≫ kT) we may be able to replace correlators by their ensemble averaged values. Israel (and others) have suggested that this ensemble sum can be represented in the thermo-field-dynamics language as an entangled sum over two copies of the system, giving the two sides of the extended black hole diagram. Thus high energy correlators in a microstate may be approximated by correlators in a spacetime with horizons, with the ensemble sum over microstates acting like the ‘sewing’ prescription of conformal field theory.

Keywords

Black Holes in String Theory Black Holes 

References

  1. [1]
    S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    S.W. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14 (1976) 2460 [SPIRES].ADSMathSciNetGoogle Scholar
  3. [3]
    W. Israel, Event horizons in static vacuum space-times, Phys. Rev. 164 (1967) 1776 [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    B. Carter, Axisymmetric black hole has only two degrees of freedom, Phys. Rev. Lett. 26 (1971) 331 [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    R.H. Price, Nonspherical perturbations of relativistic gravitational collapse. II. Integer-spin, zero-rest-mass fields, Phys. Rev. D 5 (1972) 2439 [SPIRES].ADSGoogle Scholar
  6. [6]
    D.C. Robinson, Uniqueness of the Kerr black hole, Phys. Rev. Lett. 34 (1975) 905 [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    A. Ashtekar and M. Bojowald, Black hole evaporation: a paradigm, Class. Quant. Grav. 22 (2005) 3349 [gr-qc/0504029] [SPIRES].CrossRefzbMATHADSMathSciNetGoogle Scholar
  8. [8]
    J.B. Hartle, Generalized quantum theory in evaporating black hole spacetimes, gr-qc/9705022 [SPIRES].
  9. [9]
    H. Nikolic, Resolving the black-hole information paradox by treating time on an equal footing with space, Phys. Lett. B 678 (2009) 218 [arXiv:0905.0538] [SPIRES].ADSMathSciNetGoogle Scholar
  10. [10]
    C.G. Callan and J.M. Maldacena, D-brane approach to black hole quantum mechanics, Nucl. Phys. B 472 (1996) 591 [hep-th/9602043] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    A. Dhar, G. Mandal and S.R. Wadia, Absorption vs decay of black holes in string theory and T-symmetry, Phys. Lett. B 388 (1996) 51 [hep-th/9605234] [SPIRES].ADSMathSciNetGoogle Scholar
  12. [12]
    S.R. Das and S.D. Mathur, Comparing decay rates for black holes and D-branes, Nucl. Phys. B 478 (1996) 561 [hep-th/9606185] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    S.R. Das and S.D. Mathur, Interactions involving D-branes, Nucl. Phys. B 482 (1996) 153 [hep-th/9607149] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  14. [14]
    J.M. Maldacena and A. Strominger, Black hole greybody factors and D-brane spectroscopy, Phys. Rev. D 55 (1997) 861 [hep-th/9609026] [SPIRES].ADSMathSciNetGoogle Scholar
  15. [15]
    S.D. Mathur, The information paradox: a pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    S.D. Mathur, The information paradox and the infall problem, Class. Quant. Grav. 28 (2011) 125010 [arXiv:1012.2101] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  17. [17]
    D.N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71 (1993) 1291 [gr-qc/9305007] [SPIRES].CrossRefzbMATHADSMathSciNetGoogle Scholar
  18. [18]
    W. Israel, Thermo field dynamics of black holes, Phys. Lett. A 57 (1976) 107 [SPIRES].ADSMathSciNetGoogle Scholar
  19. [19]
    H. Umezawa, H. Matsumoto and M. Tachiki, Thermo field dynamics and condensed states, North-Holland, Amsterdam The Netherlands (1982) [SPIRES].Google Scholar
  20. [20]
    J.M. Maldacena, Eternal black holes in Anti-de-Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  21. [21]
    M. Van Raamsdonk, Comments on quantum gravity and entanglement, arXiv:0907.2939 [SPIRES].
  22. [22]
    M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [Int. J. Mod. Phys. D 19 (2010) 2429] [ arXiv:1005.3035] [SPIRES].CrossRefzbMATHADSGoogle Scholar
  23. [23]
    G. ’t Hooft, The black hole interpretation of string theory, Nucl. Phys. B 335 (1990) 138 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  24. [24]
    G. ’t Hooft, Dimensional reduction in quantum gravity, gr-qc/9310026 [SPIRES].
  25. [25]
    G. ’t Hooft, The scattering matrix approach for the quantum black hole: an overview, Int. J. Mod. Phys. A 11 (1996) 4623 [gr-qc/9607022] [SPIRES].ADSMathSciNetGoogle Scholar
  26. [26]
    L. Susskind, The world as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089] [SPIRES].CrossRefzbMATHADSMathSciNetGoogle Scholar
  27. [27]
    L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [SPIRES].ADSMathSciNetGoogle Scholar
  28. [28]
    L. Susskind, String theory and the principles of black hole complementarity, Phys. Rev. Lett. 71 (1993) 2367 [hep-th/9307168] [SPIRES].CrossRefzbMATHADSMathSciNetGoogle Scholar
  29. [29]
    D.A. Lowe, J. Polchinski, L. Susskind, L. Thorlacius and J. Uglum, Black hole complementarity versus locality, Phys. Rev. D 52 (1995) 6997 [hep-th/9506138] [SPIRES].ADSMathSciNetGoogle Scholar
  30. [30]
    S.B. Giddings and W.M. Nelson, Quantum emission from two-dimensional black holes, Phys. Rev. D 46 (1992) 2486 [hep-th/9204072] [SPIRES].ADSMathSciNetGoogle Scholar
  31. [31]
    O. Lunin and S.D. Mathur, AdS/CFT duality and the black hole information paradox, Nucl. Phys. B 623 (2002) 342 [hep-th/0109154] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  32. [32]
    O. Lunin and S.D. Mathur, Statistical interpretation of Bekenstein entropy for systems with a stretched horizon, Phys. Rev. Lett. 88 (2002) 211303 [hep-th/0202072] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  33. [33]
    S.D. Mathur, The fuzzball proposal for black holes: an elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [SPIRES].CrossRefzbMATHADSMathSciNetGoogle Scholar
  34. [34]
    S.D. Mathur, The quantum structure of black holes, Class. Quant. Grav. 23 (2006) R115 [hep-th/0510180] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  35. [35]
    S.D. Mathur, Fuzzballs and the information paradox: a summary and conjectures, arXiv:0810.4525 [SPIRES].
  36. [36]
    O. Lunin, J.M. Maldacena and L. Maoz, Gravity solutions for the D1-D5 system with angular momentum, hep-th/0212210 [SPIRES].
  37. [37]
    I. Kanitscheider, K. Skenderis and M. Taylor, Fuzzballs with internal excitations, JHEP 06 (2007) 056 [arXiv:0704.0690] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  38. [38]
    S.D. Mathur, A. Saxena and Y.K. Srivastava, Constructing ‘hair’ for the three charge hole, Nucl. Phys. B 680 (2004) 415 [hep-th/0311092] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  39. [39]
    O. Lunin, Adding momentum to D1-D5 system, JHEP 04 (2004) 054 [hep-th/0404006] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  40. [40]
    S. Giusto, S.D. Mathur and A. Saxena, Dual geometries for a set of 3-charge microstates, Nucl. Phys. B 701 (2004) 357 [hep-th/0405017] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  41. [41]
    S. Giusto, S.D. Mathur and A. Saxena, 3-charge geometries and their CFT duals, Nucl. Phys. B 710 (2005) 425 [hep-th/0406103] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  42. [42]
    I. Bena and N.P. Warner, One ring to rule them all… …and in the darkness bind them?, Adv. Theor. Math. Phys. 9 (2005) 667 [hep-th/0408106] [SPIRES].zbMATHMathSciNetGoogle Scholar
  43. [43]
    V. Jejjala, O. Madden, S.F. Ross and G. Titchener, Non-supersymmetric smooth geometries and D1-D5-P bound states, Phys. Rev. D 71 (2005) 124030 [hep-th/0504181] [SPIRES].ADSMathSciNetGoogle Scholar
  44. [44]
    I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev. D 74 (2006) 066001 [hep-th/0505166] [SPIRES].ADSMathSciNetGoogle Scholar
  45. [45]
    P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP 06 (2006) 007 [hep-th/0505167] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  46. [46]
    A. Saxena, G. Potvin, S. Giusto and A.W. Peet, Smooth geometries with four charges in four dimensions, JHEP 04 (2006) 010 [hep-th/0509214] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  47. [47]
    I. Bena, C.-W. Wang and N.P. Warner, The foaming three-charge black hole, Phys. Rev. D 75 (2007) 124026 [hep-th/0604110] [SPIRES].ADSMathSciNetGoogle Scholar
  48. [48]
    V. Balasubramanian, E.G. Gimon and T.S. Levi, Four dimensional black hole microstates: from D-branes to spacetime foam, JHEP 01 (2008) 056 [hep-th/0606118] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  49. [49]
    I. Bena, C.-W. Wang and N.P. Warner, Mergers and typical black hole microstates, JHEP 11 (2006) 042 [hep-th/0608217] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  50. [50]
    J. Ford, S. Giusto and A. Saxena, A class of BPS time-dependent 3-charge microstates from spectral flow, Nucl. Phys. B 790 (2008) 258 [hep-th/0612227] [SPIRES].ADSMathSciNetGoogle Scholar
  51. [51]
    I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys. 755 (2008) 1 [hep-th/0701216] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  52. [52]
    I. Bena, N. Bobev and N.P. Warner, Bubbles on manifolds with a U(1) isometry, JHEP 08 (2007) 004 [arXiv:0705.3641] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  53. [53]
    E.G. Gimon and T.S. Levi, Black ring deconstruction, JHEP 04 (2008) 098 [arXiv:0706.3394] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  54. [54]
    I. Bena, C.-W. Wang and N.P. Warner, Plumbing the abyss: black ring microstates, JHEP 07 (2008) 019 [arXiv:0706.3786] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  55. [55]
    S. Giusto, S.F. Ross and A. Saxena, Non-supersymmetric microstates of the D1-D5-KK system, JHEP 12 (2007) 065 [arXiv:0708.3845] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  56. [56]
    V. Jejjala, O. Madden, S.F. Ross and G. Titchener, Non-supersymmetric smooth geometries and D1-D5-P bound states, Phys. Rev. D 71 (2005) 124030 [hep-th/0504181] [SPIRES].ADSMathSciNetGoogle Scholar
  57. [57]
    V. Cardoso, O.J.C. Dias, J.L. Hovdebo and R.C. Myers, Instability of non-supersymmetric smooth geometries, Phys. Rev. D 73 (2006) 064031 [hep-th/0512277] [SPIRES].ADSMathSciNetGoogle Scholar
  58. [58]
    B.D. Chowdhury and S.D. Mathur, Radiation from the non-extremal fuzzball, Class. Quant. Grav. 25 (2008) 135005 [arXiv:0711.4817] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  59. [59]
    B.D. Chowdhury and S.D. Mathur, Pair creation in non-extremal fuzzball geometries, Class. Quant. Grav. 25 (2008) 225021 [arXiv:0806.2309] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  60. [60]
    B.D. Chowdhury and S.D. Mathur, Non-extremal fuzzballs and ergoregion emission, Class. Quant. Grav. 26 (2009) 035006 [arXiv:0810.2951] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  61. [61]
    W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [SPIRES].ADSGoogle Scholar
  62. [62]
    G.W. Gibbons and M.J. Perry, Black holes and thermal Green’s functions, Proc. Roy. Soc. Lond. A 358 (1978) 467 [SPIRES].ADSMathSciNetGoogle Scholar
  63. [63]
    W.G. Unruh and N. Weiss, Acceleration radiation in interacting field theories, Phys. Rev. D 29 (1984) 1656 [SPIRES].ADSMathSciNetGoogle Scholar
  64. [64]
    G.T. Horowitz and D. Marolf, A new approach to string cosmology, JHEP 07 (1998) 014 [hep-th/9805207] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  65. [65]
    V. Balasubramanian, P. Kraus, A.E. Lawrence and S.P. Trivedi, Holographic probes of anti-de Sitter space-times, Phys. Rev. D 59 (1999) 104021 [hep-th/9808017] [SPIRES].ADSMathSciNetGoogle Scholar
  66. [66]
    A. Sen, State operator correspondence and entanglement in AdS 2 /CFT 1, arXiv:1101.4254 [SPIRES].
  67. [67]
    V. Balasubramanian, J. de Boer, S. El-Showk and I. Messamah, Black holes as effective geometries, Class. Quant. Grav. 25 (2008) 214004 [arXiv:0811.0263] [SPIRES].CrossRefADSGoogle Scholar
  68. [68]
    V. Balasubramanian, B. Czech, Y.-H. He, K. Larjo and J. Simon, Typicality, black hole microstates and superconformal field theories, JHEP 03 (2008) 008 [arXiv:0712.2434] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  69. [69]
    V. Balasubramanian et al., Typicality versus thermality: an analytic distinction, Gen. Rel. Grav. 40 (2008) 1863 [hep-th/0701122] [SPIRES].CrossRefzbMATHADSMathSciNetGoogle Scholar
  70. [70]
    V. Balasubramanian, J. de Boer, V. Jejjala and J. Simon, The library of Babel: on the origin of gravitational thermodynamics, JHEP 12 (2005) 006 [hep-th/0508023] [SPIRES].ADSGoogle Scholar
  71. [71]
    E.P. Verlinde and H.L. Verlinde, A unitary S matrix and 2D black hole formation and evaporation, Nucl. Phys. B 406 (1993) 43 [hep-th/9302022] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  72. [72]
    K. Schoutens, H.L. Verlinde and E.P. Verlinde, Black hole evaporation and quantum gravity, hep-th/9401081 [SPIRES].
  73. [73]
    E.P. Verlinde and H.L. Verlinde, High-energy scattering in quantum gravity, Class. Quant. Grav. 10 (1993) S175 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  74. [74]
    Y. Kiem, H.L. Verlinde and E.P. Verlinde, Black hole horizons and complementarity, Phys. Rev. D 52 (1995) 7053 [hep-th/9502074] [SPIRES].ADSMathSciNetGoogle Scholar
  75. [75]
    F. Englert and P. Spindel, The hidden horizon and black hole unitarity, JHEP 12 (2010) 065 [arXiv:1009.6190] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  76. [76]
    S.D. Mathur, Membrane paradigm realized?, Gen. Rel. Grav. 42 (2010) 2331 [Int. J. Mod. Phys. D 19 (2010) 2423] [ arXiv:1005.3555] [SPIRES].CrossRefzbMATHADSMathSciNetGoogle Scholar
  77. [77]
    T. Jacobson, Thermodynamics of space-time: the Einstein equation of state, Phys. Rev. Lett. 75 (1995) 1260 [gr-qc/9504004] [SPIRES].CrossRefzbMATHADSMathSciNetGoogle Scholar
  78. [78]
    S.W. Hawking, Information loss in black holes, Phys. Rev. D 72 (2005) 084013 [hep-th/0507171] [SPIRES].ADSMathSciNetGoogle Scholar
  79. [79]
    D. Marolf, Unitarity and holography in gravitational physics, Phys. Rev. D 79 (2009) 044010 [arXiv:0808.2842] [SPIRES].ADSMathSciNetGoogle Scholar
  80. [80]
    D. Marolf, Holographic thought experiments, Phys. Rev. D 79 (2009) 024029 [arXiv:0808.2845] [SPIRES].ADSMathSciNetGoogle Scholar
  81. [81]
    S.D. Mathur, Tunneling into fuzzball states, Gen. Rel. Grav. 42 (2010) 113 [arXiv:0805.3716] [SPIRES].CrossRefzbMATHADSMathSciNetGoogle Scholar
  82. [82]
    S.D. Mathur, How fast can a black hole release its information?, Int. J. Mod. Phys. D 18 (2009) 2215 [arXiv:0905.4483] [SPIRES].ADSMathSciNetGoogle Scholar
  83. [83]
    S.D. Mathur, Black hole size and phase space volumes, arXiv:0706.3884 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of PhysicsThe Ohio State UniversityColumbusU.S.A.

Personalised recommendations