Journal of High Energy Physics

, 2011:84 | Cite as

Next-to-leading order thermal spectral functions in the perturbative domain

  • M. LaineEmail author
  • A. Vuorinen
  • Y. Zhu


Motivated by applications in thermal QCD and cosmology, we elaborate on a general method for computing next-to-leading order spectral functions for composite operators at vanishing spatial momentum, accounting for real, virtual as well as thermal corrections. As an example, we compute these functions (together with the corresponding imaginary-time correlators which can be compared with lattice simulations) for scalar and pseudoscalar densities in pure Yang-Mills theory. Our results may turn out to be helpful in non-perturbative estimates of the corresponding transport coefficients, which are the bulk viscosity in the scalar channel and the rate of anomalous chirality violation in the pseudoscalar channel. We also mention links to cosmology, although the most useful results in that context may come from a future generalization of our methods to other correlators.


Thermal Field Theory NLO Computations Lattice Gauge Field Theories 


  1. [1]
    M. Le Bellac, Thermal Field Theory, Cambridge University Press, Cambridge U.K. (2000).Google Scholar
  2. [2]
    J.I. Kapusta and C. Gale, Finite-Temperature Field Theory: Principles and Applications, Cambridge University Press, Cambridge U.K. (2006).CrossRefzbMATHGoogle Scholar
  3. [3]
    G. Aarts, Transport and spectral functions in high-temperature QCD, PoS(LATTICE 2007)001 [arXiv:0710.0739] [SPIRES].
  4. [4]
    H.B. Meyer, Transport Properties of the Quark-Gluon Plasma — A Lattice QCD Perspective, Eur. Phys. J. A 47 (2011) 86 [arXiv:1104.3708] [SPIRES].ADSGoogle Scholar
  5. [5]
    G. Cuniberti, E. De Micheli and G.A. Viano, Reconstructing the thermal Green functions at real times from those at imaginary times, Commun. Math. Phys. 216 (2001) 59 [cond-mat/0109175] [SPIRES].CrossRefzbMATHADSGoogle Scholar
  6. [6]
    Y. Burnier, M. Laine and L. Mether, A test on analytic continuation of thermal imaginary-time data, Eur. Phys. J. C 71 (2011) 1619 [arXiv:1101.5534] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Ann. Phys. 158 (1984) 142 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    E. Lu and G.D. Moore, The Bulk Viscosity of a Pion Gas, Phys. Rev. C 83 (2011) 044901 [arXiv:1102.0017] [SPIRES].ADSGoogle Scholar
  9. [9]
    M. Laine, Heavy flavour kinetic equilibration in the confined phase, JHEP 04 (2011) 124 [arXiv:1103.0372] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    M. He, R.J. Fries and R. Rapp, Thermal Relaxation of Charm in Hadronic Matter, Phys. Lett. B 701 (2011) 445 [arXiv:1103.6279] [SPIRES].ADSGoogle Scholar
  11. [11]
    S. Ghosh, S.K. Das, S. Sarkar and J.-e. Alam, Dragging D mesons by hot hadrons, Phys. Rev. D 84 (2011) 011503 [arXiv:1104.0163] [SPIRES].ADSGoogle Scholar
  12. [12]
    L. Abreu, D. Cabrera, F.J. Llanes-Estrada and J.M. Torres-Rincon, Charm diffusion in a pion gas implementing unitarity, chiral and heavy quark symmetries, arXiv:1104.3815 [SPIRES].
  13. [13]
    M. Laine and M. Shaposhnikov, Sterile neutrino dark matter as a consequence of νMSM-induced lepton asymmetry, JCAP 06 (2008) 031 [arXiv:0804.4543] [SPIRES].ADSGoogle Scholar
  14. [14]
    A. Salvio, P. Lodone and A. Strumia, Towards leptogenesis at NLO: the right-handed neutrino interaction rate, JHEP 08 (2011) 116 [arXiv:1106.2814] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    R. Baier, B. Pire and D. Schiff, Dilepton production at finite temperature: Perturbative treatment at order α s, Phys. Rev. D 38 (1988) 2814 [SPIRES].ADSGoogle Scholar
  16. [16]
    Y. Gabellini, T. Grandou and D. Poizat, Electron-positron annihilation in thermal QCD, Ann. Phys. 202 (1990) 436 [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    T. Altherr and P. Aurenche, Finite temperature QCD corrections to lepton-pair formation in a Quark-Gluon Plasma, Z. Phys. C 45 (1989) 99 [SPIRES].Google Scholar
  18. [18]
    Y. Burnier, M. Laine and M. Vepsäläinen, Heavy quark medium polarization at next-to-leading order, JHEP 02 (2009) 008 [arXiv:0812.2105] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    Y. Burnier, M. Laine, J. Langelage and L. Mether, Colour-electric spectral function at next-to-leading order, JHEP 08 (2010) 094 [arXiv:1006.0867] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    S. Caron-Huot, Asymptotics of thermal spectral functions, Phys. Rev. D 79 (2009) 125009 [arXiv:0903.3958] [SPIRES].ADSGoogle Scholar
  21. [21]
    H.B. Meyer, Energy-momentum tensor correlators and spectral functions, JHEP 08 (2008) 031 [arXiv:0806.3914] [SPIRES].CrossRefGoogle Scholar
  22. [22]
    H.B. Meyer, Density, short-range order and the quark-gluon plasma, Phys. Rev. D 79 (2009) 011502 [arXiv:0808.1950] [SPIRES].ADSGoogle Scholar
  23. [23]
    N. Iqbal and H.B. Meyer, Spatial correlators in strongly coupled plasmas, JHEP 11 (2009) 029 [arXiv:0909.0582] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    H.B. Meyer, The Bulk Channel in Thermal Gauge Theories, JHEP 04 (2010) 099 [arXiv:1002.3343] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    G.D. Moore and O. Saremi, Bulk viscosity and spectral functions in QCD, JHEP 09 (2008) 015 [arXiv:0805.4201] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    P. Romatschke and D.T. Son, Spectral sum rules for the quark-gluon plasma, Phys. Rev. D 80 (2009) 065021 [arXiv:0903.3946] [SPIRES].ADSGoogle Scholar
  27. [27]
    P.J. Ellis, J.I. Kapusta and H.-B. Tang, Low-energy theorems for gluodynamics at finite temperature, Phys. Lett. B 443 (1998) 63 [nucl-th/9807071] [SPIRES].ADSGoogle Scholar
  28. [28]
    H.B. Meyer, Finite Temperature Sum Rules in Lattice Gauge Theory, Nucl. Phys. B 795 (2008) 230 [arXiv:0711.0738] [SPIRES].ADSGoogle Scholar
  29. [29]
    T. Springer, C. Gale and S. Jeon, Bulk spectral functions in single and multi-scalar gravity duals, Phys. Rev. D 82 (2010) 126011 [arXiv:1010.2760] [SPIRES].ADSGoogle Scholar
  30. [30]
    K. Kajantie and M. Vepsäläinen, Spatial scalar correlator in strongly coupled hot \( \mathcal{N} = 4 \) Yang-Mills theory, Phys. Rev. D 83 (2011) 066003 [arXiv:1011.5570] [SPIRES].ADSGoogle Scholar
  31. [31]
    P.M. Hohler and M.A. Stephanov, Bulk spectral function sum rule in QCD-like theories with a holographic dual, JHEP 06 (2011) 130 [arXiv:1103.0977] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    H.B. Meyer, A calculation of the bulk viscosity in SU(3) gluodynamics, Phys. Rev. Lett. 100 (2008) 162001 [arXiv:0710.3717] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  34. [34]
    P.B. Arnold, C. Dogan and G.D. Moore, The bulk viscosity of high-temperature QCD, Phys. Rev. D 74 (2006) 085021 [hep-ph/0608012] [SPIRES].ADSGoogle Scholar
  35. [35]
    G.D. Moore and M. Tassler, The Sphaleron Rate in SU(N) Gauge Theory, JHEP 02 (2011) 105 [arXiv:1011.1167] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    M. Laine, M. Vepsäläinen and A. Vuorinen, Ultraviolet asymptotics of scalar and pseudoscalar correlators in hot Yang-Mills theory, JHEP 10 (2010) 010 [arXiv:1008.3263] [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    M. Laine, M. Vepsäläinen and A. Vuorinen, Intermediate distance correlators in hot Yang-Mills theory, JHEP 12 (2010) 078 [arXiv:1011.4439] [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
    E. Braaten and R.D. Pisarski, Simple effective Lagrangian for hard thermal loops, Phys. Rev. D 45 (1992) 1827 [SPIRES].ADSGoogle Scholar
  39. [39]
    A.L. Kataev, N.V. Krasnikov and A.A. Pivovarov, T wo-loop calculations for the propagators of gluonic currents, Nucl. Phys. B 198 (1982) 508 [Erratum ibid. B 490 (1997) 505] [hep-ph/9612326] [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    G.D. Moore and J.-M. Robert, Dileptons, spectral weights and conductivity in the quark-gluon plasma, hep-ph/0607172 [SPIRES].
  41. [41]
    J.P. Blaizot and E. Iancu, Kinetic equations for long wavelength excitations of the quark-gluon plasma, Phys. Rev. Lett. 70 (1993) 3376 [hep-ph/9301236] [SPIRES].CrossRefADSGoogle Scholar
  42. [42]
    P.F. Kelly, Q. Liu, C. Lucchesi and C. Manuel, Deriving the hard thermal loops of QCD from classical transport theory, Phys. Rev. Lett. 72 (1994) 3461 [hep-ph/9403403] [SPIRES].CrossRefADSGoogle Scholar
  43. [43]
    E. Braaten, R.D. Pisarski and T.C. Yuan, Production of Soft Dileptons in the Quark-Gluon Plasma, Phys. Rev. Lett. 64 (1990) 2242 [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    H.B. Meyer, Lattice Gauge Theory Sum Rule for the Shear Channel, Phys. Rev. D 82 (2010) 054504 [arXiv:1005.2686] [SPIRES].ADSGoogle Scholar
  45. [45]
    M. Laine and Y. Schröder, Two-loop QCD gauge coupling at high temperatures, JHEP 03 (2005) 067 [hep-ph/0503061] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    T. Umeda, A constant contribution in meson correlators at finite temperature, Phys. Rev. D 75 (2007) 094502 [hep-lat/0701005] [SPIRES].ADSGoogle Scholar
  47. [47]
    S. Caron-Huot, M. Laine and G.D. Moore, A way to estimate the heavy quark thermalization rate from the lattice, JHEP 04 (2009) 053 [arXiv:0901.1195] [SPIRES].CrossRefADSGoogle Scholar
  48. [48]
    S. Caron-Huot and G.D. Moore, Heavy quark diffusion in QCD and \( \mathcal{N} = 4 \) SYM at next-to-leading order, JHEP 02 (2008) 081 [arXiv:0801.2173] [SPIRES].CrossRefADSGoogle Scholar
  49. [49]
    P. Graf and F.D. Steffen, Thermal axion production in the primordial quark-gluon plasma, Phys. Rev. D 83 (2011) 075011 [arXiv:1008.4528] [SPIRES].ADSGoogle Scholar
  50. [50]
    V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B 155 (1985) 36 [SPIRES].ADSGoogle Scholar
  51. [51]
    D. Bödeker, Moduli decay in the hot early universe, JCAP 06 (2006) 027 [hep-ph/0605030] [SPIRES].Google Scholar
  52. [52]
    M. Laine, On bulk viscosity and moduli decay, Prog. Theor. Phys. Suppl. 186 (2010) 404 [arXiv:1007.2590] [SPIRES].CrossRefzbMATHADSGoogle Scholar
  53. [53]
    A. Anisimov, D. Besak and D. Bödeker, Thermal production of relativistic Majorana neutrinos: Strong enhancement by multiple soft scattering, JCAP 03 (2011) 042 [arXiv:1012.3784] [SPIRES].ADSGoogle Scholar
  54. [54]
    A.K. Rajantie, Feynman diagrams to three loops in three-dimensional field theory, Nucl. Phys. B 480 (1996) 729 [Erratum ibid. B 513 (1998) 761] [hep-ph/9606216] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  55. [55]
    E. Braaten and T.C. Yuan, Calculation of screening in a hot plasma, Phys. Rev. Lett. 66 (1991) 2183 [SPIRES].CrossRefADSGoogle Scholar
  56. [56]
    E. Braaten and R.D. Pisarski, Soft Amplitudes in Hot Gauge Theories: A General Analysis, Nucl. Phys. B 337 (1990) 569 [SPIRES].CrossRefADSGoogle Scholar
  57. [57]
    V.P. Silin, On the electromagnetic properties of a relativistic plasma, Sov. Phys. JETP 11 (1960) 1136 [Zh. Eksp. Teor. Fiz. 38 (1960) 1577] [SPIRES].MathSciNetGoogle Scholar
  58. [58]
    V.V. Klimov, Collective Excitations in a Hot Quark Gluon Plasma, Sov. Phys. JETP 55 (1982) 199 [Zh. Eksp. Teor. Fiz. 82 (1982) 336] [SPIRES].Google Scholar
  59. [59]
    H.A. Weldon, Covariant Calculations at Finite Temperature: The Relativistic Plasma, Phys. Rev. D 26 (1982) 1394 [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of BielefeldBielefeldGermany

Personalised recommendations