Journal of High Energy Physics

, 2011:65 | Cite as

Heterotic sigma models with N = 2 space-time supersymmetry

Open Access


We study the non-linear sigma model realization of a heterotic vacuum with N = 2 space-time supersymmetry. We examine the requirements of (0,2) + (0,4) world-sheet supersymmetry and show that a geometric vacuum must be described by a principal two-torus bundle over a K3 manifold.


Superstrings and Heterotic Strings Extended Supersymmetry Sigma Models 


  1. [1]
    K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux, JHEP 08 (1999) 023 [hep-th/9908088] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    A. Strominger, Superstrings with Torsion, Nucl. Phys. B 274 (1986) 253 [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    J.-X. Fu and S.-T. Yau, The theory of superstring with flux on non-Kähler manifolds and the complex Monge-Ampere equation, J. Diff. Geom. 78 (2009) 369 [hep-th/0604063] [SPIRES].MathSciNetGoogle Scholar
  4. [4]
    E. Goldstein and S. Prokushkin, Geometric model for complex non-Kähler manifolds with SU(3) structure, Commun. Math. Phys. 251 (2004) 65 [hep-th/0212307] [SPIRES].MATHADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    J. Li and S.-T. Yau, The existence of supersymmetric string theory with torsion, hep-th/0411136 [SPIRES].
  6. [6]
    B. Andreas and M. Garcia-Fernandez, Solutions of the Strominger System via Stable Bundles on Calabi-Yau Threefolds, arXiv:1008.1018 [SPIRES].
  7. [7]
    J.P. Gauntlett, D. Martelli and D. Waldram, Superstrings with intrinsic torsion, Phys. Rev. D 69 (2004) 086002 [hep-th/0302158] [SPIRES].ADSMathSciNetGoogle Scholar
  8. [8]
    T. Banks, L.J. Dixon, D. Friedan and E.J. Martinec, Phenomenology and Conformal Field Theory Or Can String Theory Predict the Weak Mixing Angle?, Nucl. Phys. B 299 (1988) 613 [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    T. Banks and L.J. Dixon, Constraints on String Vacua with Space-Time Supersymmetry, Nucl. Phys. B 307 (1988) 93 [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    S. Ferrara, D. Lüst and S. Theisen, World sheet versus spectrum symmetries in heterotic and type II superstrings, Nucl. Phys. B 325 (1989) 501 [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    C.M. Hull and E. Witten, Supersymmetric σ-models and the Heterotic String, Phys. Lett. B 160 (1985) 398 [SPIRES].ADSMathSciNetGoogle Scholar
  12. [12]
    A. Sen, (2, 0) Supersymmetry and Space-Time Supersymmetry in the Heterotic String Theory, Nucl. Phys. B 278 (1986) 289 [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    K. Becker, M. Becker, J.-X. Fu, L.-S. Tseng and S.-T. Yau, Anomaly cancellation and smooth non-Kähler solutions in heterotic string theory, Nucl. Phys. B 751 (2006) 108 [hep-th/0604137] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    J. Evslin and R. Minasian, Topology Change from (Heterotic) Narain T-duality, Nucl. Phys. B 820 (2009) 213 [arXiv:0811.3866] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    A. Swann, Twisting Hermitian and hypercomplex geometries, arXiv:0812.2780.
  16. [16]
    D. Andriot, R. Minasian and M. Petrini, Flux backgrounds from Twists, JHEP 12 (2009) 028 [arXiv:0903.0633] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    M. Becker, L.-S. Tseng and S.-T. Yau, New Heterotic Non-Kähler Geometries, arXiv:0807.0827 [SPIRES].
  18. [18]
    J. McOrist, D.R. Morrison and S. Sethi, Geometries, Non-Geometries and Fluxes, arXiv:1004.5447 [SPIRES].
  19. [19]
    A. Adams, Orbifold Phases of Heterotic Flux Vacua, arXiv:0908.2994 [SPIRES].
  20. [20]
    P. West, Introduction to supersymmetry and supergravity, World Scientific, Singapore (1990).MATHGoogle Scholar
  21. [21]
    C.M. Hull and P.K. Townsend, World sheet supersymmetry and anomaly cancellation in the heterotic string, Phys. Lett. B 178 (1986) 187 [SPIRES].ADSMathSciNetGoogle Scholar
  22. [22]
    K. Becker and S. Sethi, Torsional Heterotic Geometries, Nucl. Phys. B 820 (2009) 1 [arXiv:0903.3769] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    K. Becker, C. Bertinato, Y.-C. Chung and G. Guo, Supersymmetry breaking, heterotic strings and fluxes, Nucl. Phys. B 823 (2009) 428 [arXiv:0904.2932] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley-Interscience, John Wiley & Sons, New York (1978), Pure and Applied Mathematics.MATHGoogle Scholar
  25. [25]
    R. Blumenhagen, G. Honecker and T. Weigand, Loop-corrected compactifications of the heterotic string with line bundles, JHEP 06 (2005) 020 [hep-th/0504232] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    M. Green, J. Schwarz and E. Witten, Superstring Theory, Volume 1, Cambridge University Press, Cambridge U.K. (1987).MATHGoogle Scholar
  27. [27]
    L. Álvarez-Gaumé and D.Z. Freedman, Geometrical Structure and Ultraviolet Finiteness in the Supersymmetric σ-model, Commun. Math. Phys. 80 (1981) 443 [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    P.S. Howe and G. Papadopoulos, Further remarks on the geometry of two-dimensional nonlinear σ-models, Class. Quant. Grav. 5 (1988) 1647 [SPIRES].MATHADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    D.D. Joyce, Riemannian holonomy groups and calibrated geometry, vol. 12 of Oxford Graduate Texts in Mathematics, Oxford University Press, Oxford U.K. (2007).Google Scholar
  30. [30]
    C.P. Boyer, A note on hyper-Hermitian four-manifolds, Proc. Amer. Math. Soc. 102 (1988) 157.MATHMathSciNetGoogle Scholar
  31. [31]
    K. Kodaira, Complex manifolds and deformation of complex structures, Classics in Mathematics. Springer-Verlag, Berlin Germany (2005).MATHGoogle Scholar
  32. [32]
    J. Distler and E. Sharpe, Heterotic compactifications with principal bundles for general groups and general levels, Adv. Theor. Math. Phys. 14 (2010) 335 [hep-th/0701244] [SPIRES].MATHMathSciNetGoogle Scholar
  33. [33]
    J. Fine and D. Panov, Hyperbolic geometry and non-Kahler manifolds with trivial canonical bundle, arXiv:0905.3237.
  34. [34]
    A. Adams, M. Ernebjerg and J.M. Lapan, Linear models for flux vacua, Adv. Theor. Math. Phys. 12 (2008) 817 [hep-th/0611084] [SPIRES].MATHMathSciNetGoogle Scholar
  35. [35]
    A. Adams and J.M. Lapan, Computing the Spectrum of a Heterotic Flux Vacuum, JHEP 03 (2011) 045 [arXiv:0908.4294] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    H.-C. Wang, Closed manifolds with homogeneous complex structure, Amer. J. Math. 76 (1954) 1.MATHMathSciNetCrossRefGoogle Scholar
  37. [37]
    A. Adams and D. Guarrera, Heterotic Flux Vacua from Hybrid Linear Models, arXiv:0902.4440 [SPIRES].
  38. [38]
    E. Witten, σ-models and the ADHM construction of instantons, J. Geom. Phys. 15 (1995) 215 [hep-th/9410052] [SPIRES].MATHADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)GolmGermany
  2. 2.Institut de Physique Théorique, CEA/SaclayGif-sur-Yvette CedexFrance

Personalised recommendations