Journal of High Energy Physics

, 2011:61 | Cite as

W and Z/γ boson production in association with a bottom-antibottom pair

  • Rikkert Frederix
  • Stefano Frixione
  • Valentin Hirschi
  • Fabio Maltoni
  • Roberto Pittau
  • Paolo Torrielli
Open Access
Article

Abstract

We present a study of \( \ell \nu b\bar{b} \) and \( {\ell^{+} }{\ell^{-} }b\bar{b} \) production at hadron colliders. Our results, accurate to the next-to-leading order in QCD, are based on automatic matrix-element calculations performed by MadLoop and MadFKS, and are given at both the parton level, and after the matching with the Herwig event generator, achieved with aMC@NLO. We retain the complete dependence on the bottom-quark mass, and include exactly all spin correlations of final-state leptons. We discuss the cases of several observables at the LHC which highlight the importance of accurate simulations.

Keywords

QCD Phenomenology 

References

  1. [1]
    CDF collaboration, F. Abe et al., Observation of top quark production in \( \bar{p}p \) collisions, Phys. Rev. Lett. 74 (1995) 2626 [hep-ex/9503002] [SPIRES].ADSCrossRefGoogle Scholar
  2. [2]
    D0 collaboration, S. Abachi et al., Observation of the top quark, Phys. Rev. Lett. 74 (1995) 2632 [hep-ex/9503003] [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    D0 collaboration, V.M. Abazov et al., Observation of single top-quark production, Phys. Rev. Lett. 103 (2009) 092001 [arXiv:0903.0850] [SPIRES].ADSCrossRefGoogle Scholar
  4. [4]
    CDF collaboration, T. Aaltonen et al., First observation of electroweak single top quark production, Phys. Rev. Lett. 103 (2009) 092002 [arXiv:0903.0885] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    CDF and D0 collaboration, Combined CDF and D0 upper limits on Standard Model Higgs-boson production with up to 6.7 fb−1 of data, arXiv:1007.4587 [SPIRES].
  6. [6]
    CMS collaboration, G.L. Bayatian et al., CMS technical design report, volume II: physics performance, J. Phys. G 34 (2007) 995 [SPIRES].ADSGoogle Scholar
  7. [7]
    ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS experiment — detector, trigger and physics, arXiv:0901.0512 [SPIRES].
  8. [8]
    P.B. Arnold and M.H. Reno, The complete computation of high p T W and Z production in 2nd order QCD, Nucl. Phys. B 319 (1989) 37 [Erratum ibid. B 330 (1990) 284] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    J.M. Campbell and R.K. Ellis, Next-to-leading order corrections to W + 2 jet and Z + 2 jet production at hadron colliders, Phys. Rev. D 65 (2002) 113007 [hep-ph/0202176] [SPIRES].ADSGoogle Scholar
  10. [10]
    C.F. Berger et al., Next-to-leading order QCD predictions for W + 3-jet distributions at hadron colliders, Phys. Rev. D 80 (2009) 074036 [arXiv:0907.1984] [SPIRES].ADSGoogle Scholar
  11. [11]
    C.F. Berger et al., Precise predictions for W + 3 jet production at hadron colliders, Phys. Rev. Lett. 102 (2009) 222001 [arXiv:0902.2760] [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    K. Melnikov and G. Zanderighi, W + 3 jet production at the LHC as a signal or background, Phys. Rev. D 81 (2010) 074025 [arXiv:0910.3671] [SPIRES].ADSGoogle Scholar
  13. [13]
    C.F. Berger et al., Precise predictions for W + 4 jet production at the Large Hadron Collider, Phys. Rev. Lett. 106 (2011) 092001 [arXiv:1009.2338] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    R.K. Ellis, G. Martinelli and R. Petronzio, Lepton pair production at large transverse momentum in second order QCD, Nucl. Phys. B 211 (1983) 106 [SPIRES].ADSCrossRefGoogle Scholar
  15. [15]
    C.F. Berger et al., Next-to-leading order QCD predictions for Z/γ * +3-jet distributions at the Tevatron, Phys. Rev. D 82 (2010) 074002 [arXiv:1004.1659] [SPIRES].ADSGoogle Scholar
  16. [16]
    R.K. Ellis and S. Veseli, Strong radiative corrections to \( Wb\bar{b} \) production in \( p\bar{p} \) collisions, Phys. Rev. D 60 (1999) 011501 [hep-ph/9810489] [SPIRES].ADSGoogle Scholar
  17. [17]
    J.M. Campbell and R.K. Ellis, Radiative corrections to \( Zb\bar{b} \) production, Phys. Rev. D 62 (2000) 114012 [hep-ph/0006304] [SPIRES].ADSGoogle Scholar
  18. [18]
    F. Febres Cordero, L. Reina and D. Wackeroth, NLO QCD corrections to W boson production with a massive b-quark jet pair at the Tevatron \( p\bar{p} \) collider, Phys. Rev. D 74 (2006) 034007 [hep-ph/0606102] [SPIRES].ADSGoogle Scholar
  19. [19]
    F. Febres Cordero, L. Reina and D. Wackeroth, NLO QCD corrections to \( Zb\bar{b} \) production with massive bottom quarks at the Fermilab Tevatron, Phys. Rev. D 78 (2008) 074014 [arXiv:0806.0808] [SPIRES].ADSGoogle Scholar
  20. [20]
    F. Febres Cordero, L. Reina and D. Wackeroth, W- and Z-boson production with a massive bottom-quark pair at the Large Hadron Collider, Phys. Rev. D 80 (2009) 034015 [arXiv:0906.1923] [SPIRES].ADSGoogle Scholar
  21. [21]
    S. Badger, J.M. Campbell and R.K. Ellis, QCD corrections to the hadronic production of a heavy quark pair and a W-boson including decay correlations, JHEP 03 (2011) 027 [arXiv:1011.6647] [SPIRES].ADSCrossRefGoogle Scholar
  22. [22]
    J.M. Campbell et al., Associated production of a W boson and one b jet, Phys. Rev. D 79 (2009) 034023 [arXiv:0809.3003] [SPIRES].ADSGoogle Scholar
  23. [23]
    J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Associated production of a Z boson and a single heavy quark jet, Phys. Rev. D 69 (2004) 074021 [hep-ph/0312024] [SPIRES].ADSGoogle Scholar
  24. [24]
    J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Production of a W boson and two jets with one b-quark tag, Phys. Rev. D 75 (2007) 054015 [hep-ph/0611348] [SPIRES].ADSGoogle Scholar
  25. [25]
    J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Production of a Z boson and two jets with one heavy-quark tag, Phys. Rev. D 73 (2006) 054007 [Erratum ibid. D 77 (2008) 019903] [hep-ph/0510362] [SPIRES].ADSGoogle Scholar
  26. [26]
    CDF collaboration, D. Acosta et al., Study of the heavy flavor content of jets produced in association with W bosons in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.8 \) TeV, Phys. Rev. D 65 (2002) 052007 [hep-ex/0109012] [SPIRES].ADSGoogle Scholar
  27. [27]
    CDF collaboration, T. Aaltonen et al., Measurement of cross sections for b jet production in events with a Z boson in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. D 79 (2009) 052008 [arXiv:0812.4458] [SPIRES].ADSGoogle Scholar
  28. [28]
    CDF collaboration, T. Aaltonen et al., First measurement of the b-jet cross section in events with a W Boson in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 104 (2010) 131801 [arXiv:0909.1505] [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    D0 collaboration, V.M. Abazov et al., A measurement of the ratio of inclusive cross sections \( {{{\sigma \left( {p\bar{p} \to Z + b\;{\text{jet}}} \right)}} \left/ {{\sigma \left( {p\bar{p} \to Z + {\text{jet}}} \right)}} \right.} \) at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. D 83 (2011) 031105 [arXiv:1010.6203] [SPIRES].ADSGoogle Scholar
  30. [30]
    CMS collaboration, V. Ciulli et al., W/Z + jets results from CMS, CMS report, CMS-CR-2011-073, CERN, Geneva Switzerland (2011).Google Scholar
  31. [31]
    ATLAS collaboration, Measurement of the production cross section for W-bosons in association with jets in collisions using 33 pb−1 at \( \sqrt {s} = 7 \) TeV with the ATLAS detector, ATLAS note, ATLAS-CONF-2011-060, CERN, Geneva Switzerland (2011).Google Scholar
  32. [32]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    R. Frederix et al., Scalar and pseudoscalar Higgs production in association with a top-antitop pair, Phys. Lett. B 701 (2011) 427 [arXiv:1104.5613] [SPIRES].ADSGoogle Scholar
  34. [34]
    V. Hirschi et al., Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [SPIRES].ADSCrossRefGoogle Scholar
  35. [35]
    G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [SPIRES].ADSCrossRefGoogle Scholar
  38. [38]
    R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    C. Oleari and L. Reina, \( Wb\bar{b} \) production in POWHEG, arXiv:1105.4488 [SPIRES].
  40. [40]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX , JHEP 06 (2010) 043 [arXiv:1002.2581] [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [SPIRES].ADSCrossRefGoogle Scholar
  42. [42]
    G. Marchesini et al., Herwig : a Monte Carlo event generator for simulating hadron emission reactions with interfering gluons. Version 5.1 — april 1991, Comput. Phys. Commun. 67 (1992) 465 [SPIRES].ADSCrossRefGoogle Scholar
  43. [43]
    G. Corcella et al., Herwig 6.5: an event generator for Hadron Emission Reactions With Interfering Gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [SPIRES].ADSCrossRefGoogle Scholar
  44. [44]
    G. Corcella et al., Herwig 6.5 release note, hep-ph/0210213 [SPIRES].
  45. [45]
    M. Bahr et al., Herwig++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [SPIRES].ADSCrossRefGoogle Scholar
  46. [46]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, Pythia 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].ADSCrossRefGoogle Scholar
  47. [47]
    S. Frixione, F. Stoeckli, P. Torrielli and B.R. Webber, NLO QCD corrections in Herwig++ with MC@NLO, JHEP 01 (2011) 053 [arXiv:1010.0568] [SPIRES].ADSCrossRefGoogle Scholar
  48. [48]
    P. Torrielli and S. Frixione, Matching NLO QCD computations with Pythia using MC@NLO, JHEP 04 (2010) 110 [arXiv:1002.4293] [SPIRES].ADSCrossRefGoogle Scholar
  49. [49]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [SPIRES].ADSCrossRefGoogle Scholar
  50. [50]
    A. Banfi, G.P. Salam and G. Zanderighi, Infrared safe definition of jet flavor, Eur. Phys. J. C 47 (2006) 113 [hep-ph/0601139] [SPIRES].ADSCrossRefGoogle Scholar
  51. [51]
    J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].ADSCrossRefGoogle Scholar
  52. [52]
    Z. Bern et al., Left-handed W bosons at the LHC, Phys. Rev. D 84 (2011) 034008 [arXiv:1103.5445] [SPIRES].ADSGoogle Scholar
  53. [53]
    F. Maltoni, T. McElmurry and S. Willenbrock, Inclusive production of a Higgs or Z boson in association with heavy quarks, Phys. Rev. D 72 (2005) 074024 [hep-ph/0505014] [SPIRES].ADSGoogle Scholar
  54. [54]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [SPIRES].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Rikkert Frederix
    • 1
    • 2
  • Stefano Frixione
    • 3
    • 4
  • Valentin Hirschi
    • 4
  • Fabio Maltoni
    • 5
  • Roberto Pittau
    • 6
    • 3
    • 2
  • Paolo Torrielli
    • 4
  1. 1.Institut für Theoretische PhysikUniversität ZürichZürichSwitzerland
  2. 2.KITP, University of California Santa BarbaraSanta BarbaraU.S.A.
  3. 3.PH Department, TH UnitCERNGeneva 23Switzerland
  4. 4.ITPP, EPFLLausanneSwitzerland
  5. 5.Centre for Cosmology, Particle Physics and Phenomenology (CP3)Université catholique de LouvainLouvain-la-NeuveBelgium
  6. 6.Departamento de Física Teórica y del Cosmos y CAFPEUniversidad de GranadaGranadaSpain

Personalised recommendations