Journal of High Energy Physics

, 2011:49 | Cite as

Discriminating top-antitop resonances using azimuthal decay correlations

Article

Abstract

Top-antitop pairs produced in the decay of a new heavy resonance will exhibit spin correlations that contain valuable coupling information. When the tops decay, these correlations imprint themselves on the angular patterns of the final quarks and leptons. While many approaches to the measurement of top spin correlations are known, the most common ones require detailed kinematic reconstructions and are insensitive to some important spin interference effects. In particular, spin-1 resonances with mostly-vector or mostly-axial couplings to top cannot be easily discriminated from one another without appealing to mass-suppressed effects or to more model-dependent interference with continuum Standard Model production. Here, we propose to probe the structure of a resonance’s couplings to tops by measuring the azimuthal angles of the tops’ decay products about the production axis. These angles exhibit modulations which are typically O(0.1-1), and which by themselves allow for discrimination of spin-0 from higher spins, measurement of the CP-phase for spin-0, and measurement of the vector/axial composition for spins1and 2. For relativistic tops, the azimuthal decay angles can be well-approximated without detailed knowledge of the tops’ velocities, and appear to be robust against imperfect energy measurements and neutrino reconstructions. We illustrate this point in the highly challenging dileptonic decay mode, which also exhibits the largest modulations. We comment on the relevance of these observables for testing axigluon-like models that explain the top quark A FB anomaly at the Tevatron, through direct production at the LHC.

Keywords

Beyond Standard Model Heavy Quark Physics 

References

  1. [1]
    CDF collaboration, T. Aaltonen et al., Evidence for a mass dependent forward-backward asymmetry in top quark pair production, Phys. Rev. D 83 (2011) 112003 [arXiv:1101.0034] [SPIRES].ADSGoogle Scholar
  2. [2]
    CDF collaboration, T. Aaltonen et al., Forward-backward asymmetry in top quark production in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 101 (2008) 202001 [arXiv:0806.2472] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    D0 collaboration, V.M. Abazov et al., First measurement of the forward-backward charge asymmetry in top quark pair production, Phys. Rev. Lett. 100 (2008) 142002 [arXiv:0712.0851] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    D0 collaboration, Measurement of the forward-backward production asymmetry of t and \( \bar{t} \) quarks in \( p\bar{p} \to t\bar{t} \) events, D0 NOTE 6062-CONF (2010).Google Scholar
  5. [5]
    CDF collaboration, Measurement of the forward-backward asymmetry in top pair production in the dilepton decay channel using 5.1 fb −1, CDF NOTE (2011) 10436.Google Scholar
  6. [6]
    P.H. Frampton, J. Shu and K. Wang, Axigluon as possible explanation for \( p\bar{p} \to t\bar{t} \) forward-backward asymmetry, Phys. Lett. B 683 (2010) 294 [arXiv:0911.2955] [SPIRES].ADSGoogle Scholar
  7. [7]
    J.C. Pati and A. Salam, Mirror fermions, J ψ particles, Kolar mine events and neutrino anomaly, Phys. Lett. B 58 (1975) 333 [SPIRES].ADSGoogle Scholar
  8. [8]
    L.J. Hall and A.E. Nelson, Heavy gluons and monojets, Phys. Lett. B 153 (1985) 430 [SPIRES].ADSGoogle Scholar
  9. [9]
    P.H. Frampton and S.L. Glashow, Chiral color: an alternative to the standard model, Phys. Lett. B 190 (1987) 157 [SPIRES].ADSGoogle Scholar
  10. [10]
    Y. Bai, J.L. Hewett, J. Kaplan and T.G. Rizzo, LHC predictions from a tevatron anomaly in the top quark forward-backward asymmetry, JHEP 03 (2011) 003 [arXiv:1101.5203] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    J.L. Hewett, J. Shelton, M. Spannowsky, T.M.P. Tait and M. Takeuchi, A FB t meets LHC, arXiv:1103.4618 [SPIRES].
  12. [12]
    C. Delaunay, O. Gedalia, Y. Hochberg, G. Perez and Y. Soreq, Implications of the CDF \( t\bar{t} \) forward-backward asymmetry for hard top physics, JHEP 08 (2011) 031 [arXiv:1103.2297] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    J.A. Aguilar-Saavedra and M. Pérez-Victoria, Probing the Tevatron t tbar asymmetry at LHC, JHEP 05 (2011) 034 [arXiv:1103.2765] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    O. Antunano, J.H. Kuhn and G. Rodrigo, Top quarks, axigluons and charge asymmetries at hadron colliders, Phys. Rev. D 77 (2008) 014003 [arXiv:0709.1652] [SPIRES].ADSGoogle Scholar
  15. [15]
    Y.-k. Wang, B. Xiao and S.-h. Zhu, One-side forward-backward asymmetry in top quark pair production at CERN Large Hadron Collider, Phys. Rev. D 82 (2010) 094011 [arXiv:1008.2685] [SPIRES].ADSGoogle Scholar
  16. [16]
    Y.-k. Wang, B. Xiao and S.-h. Zhu, One-side forward-backward asymmetry at the LHC, Phys. Rev. D 83 (2011) 015002 [arXiv:1011.1428] [SPIRES].ADSGoogle Scholar
  17. [17]
    B. Xiao, Y.-K. Wang, Z.-Q. Zhou and S.-h. Zhu, Edge charge asymmetry in top pair production at the LHC, Phys. Rev. D 83 (2011) 057503 [arXiv:1101.2507] [SPIRES].ADSGoogle Scholar
  18. [18]
    D. Choudhury, R.M. Godbole, R.K. Singh and K. Wagh, Top production at the Tevatron/LHC and nonstandard, strongly interacting spin one particles, Phys. Lett. B 657 (2007) 69 [arXiv:0705.1499] [SPIRES].ADSGoogle Scholar
  19. [19]
    R.M. Godbole, K. Rao, S.D. Rindani and R.K. Singh, On measurement of top polarization as a probe of \( t\bar{t} \) production mechanisms at the LHC, JHEP 11 (2010) 144 [arXiv:1010.1458] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni and G. Servant, Non-resonant new physics in top pair production at hadron colliders, JHEP 03 (2011) 125 [arXiv:1010.6304] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    J. Cao, L. Wu and J.M. Yang, New physics effects on top quark spin correlation and polarization at the LHC: a comparative study in different models, Phys. Rev. D 83 (2011) 034024 [arXiv:1011.5564] [SPIRES].ADSGoogle Scholar
  22. [22]
    D.-W. Jung, P. Ko and J.S. Lee, Longitudinal top polarization as a probe of a possible origin of forward-backward asymmetry of the top quark at the Tevatron, Phys. Lett. B 701 (2011) 248 [arXiv:1011.5976] [SPIRES].ADSGoogle Scholar
  23. [23]
    R. Frederix and F. Maltoni, Top pair invariant mass distribution: a window on new physics, JHEP 01 (2009) 047 [arXiv:0712.2355] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    W. Bernreuther, A. Brandenburg, Z.G. Si and P. Uwer, Top quark pair production and decay at hadron colliders, Nucl. Phys. B 690 (2004) 81 [hep-ph/0403035] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez and J. Virzi, LHC signals from warped extra dimensions, Phys. Rev. D 77 (2008) 015003 [hep-ph/0612015] [SPIRES].ADSGoogle Scholar
  26. [26]
    L.G. Almeida, S.J. Lee, G. Perez, I. Sung and J. Virzi, Top jets at the LHC, Phys. Rev. D 79 (2009) 074012 [arXiv:0810.0934] [SPIRES].ADSGoogle Scholar
  27. [27]
    J. Shelton, Polarized tops from new physics: signals and observables, Phys. Rev. D 79 (2009) 014032 [arXiv:0811.0569] [SPIRES].ADSGoogle Scholar
  28. [28]
    D. Krohn, J. Shelton and L.-T. Wang, Measuring the polarization of boosted hadronic tops, JHEP 07 (2010) 041 [arXiv:0909.3855] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    V.D. Barger, J. Ohnemus and R.J.N. Phillips, Spin correlation effects in the hadroproduction and decay of very heavy top quark pairs, Int. J. Mod. Phys. A 4 (1989) 617 [SPIRES].ADSGoogle Scholar
  30. [30]
    Y. Hara, Angular correlation of charged leptons from t anti-t produced in the gluon fusion, Prog. Theor. Phys. 86 (1991) 779 [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    G.L. Kane, G.A. Ladinsky and C.P. Yuan, Using the top quark for testing standard model polarization and CP predictions, Phys. Rev. D 45 (1992) 124 [SPIRES].ADSGoogle Scholar
  32. [32]
    G. Mahlon and S.J. Parke, Angular correlations in top quark pair production and decay at hadron colliders, Phys. Rev. D 53 (1996) 4886 [hep-ph/9512264] [SPIRES].ADSGoogle Scholar
  33. [33]
    T. Stelzer and S. Willenbrock, Spin correlation in top quark production at hadron colliders, Phys. Lett. B 374 (1996) 169 [hep-ph/9512292] [SPIRES].ADSGoogle Scholar
  34. [34]
    G. Mahlon and S.J. Parke, Spin correlation effects in top quark pair production at the LHC, Phys. Rev. D 81 (2010) 074024 [arXiv:1001.3422] [SPIRES].ADSGoogle Scholar
  35. [35]
    M. Beneke et al., Top quark physics, hep-ph/0003033 [SPIRES].
  36. [36]
    J. Bernabeu, N. Rius and A. Pich, Tau spin correlations at the Z peak: Aplanarities of the decay products, Phys. Lett. B 257 (1991) 219 [SPIRES].ADSGoogle Scholar
  37. [37]
    ALEPH collaboration, R. Barate et al., Measurement of the transverse spin correlations in the decay Z → tau + tau-, Phys. Lett. B 405 (1997) 191 [SPIRES].ADSGoogle Scholar
  38. [38]
    DELPHI collaboration, P. Abreu et al., Measurement of the transverse spin correlation in Z → τ + τ decays, Phys. Lett. B 404 (1997) 194 [SPIRES].ADSGoogle Scholar
  39. [39]
    R. Volkert, A full spin analysis of the process e + e  → τ + τ using the L3 Detector at LEP, DESY-ZEUTHEN-97-04 (1997).Google Scholar
  40. [40]
    M.R. Buckley, H. Murayama, W. Klemm and V. Rentala, Discriminating spin through quantum interference, Phys. Rev. D 78 (2008) 014028 [arXiv:0711.0364] [SPIRES].ADSGoogle Scholar
  41. [41]
    M.R. Buckley, B. Heinemann, W. Klemm and H. Murayama, Quantum Interference Effects Among Helicities at LEP-II and Tevatron, Phys. Rev. D 77 (2008) 113017 [arXiv:0804.0476] [SPIRES].ADSGoogle Scholar
  42. [42]
    M.R. Buckley, S.Y. Choi, K. Mawatari and H. Murayama, Determining Spin through Quantum Azimuthal-Angle Correlations, Phys. Lett. B 672 (2009) 275 [arXiv:0811.3030] [SPIRES].ADSGoogle Scholar
  43. [43]
    H. Murayama and V. Rentala, Randall-Sundrum graviton spin determination using azimuthal angular dependence, arXiv:0904.4561 [SPIRES].
  44. [44]
    F. Boudjema and R.K. Singh, A model independent spin analysis of fundamental particles using azimuthal asymmetries, JHEP 07 (2009) 028 [arXiv:0903.4705] [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    Y. Kiyo, J. Kodaira and K. Morii, Azimuthal angular dependence of decay lepton in e + e - → t anti-t, Eur. Phys. J. C 18 (2000) 327 [hep-ph/0008065] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    W. Bernreuther, M. Flesch and P. Haberl, Signatures of Higgs bosons in the top quark decay channel at hadron colliders, Phys. Rev. D 58 (1998) 114031 [hep-ph/9709284] [SPIRES].ADSGoogle Scholar
  47. [47]
    W. Bernreuther, A. Brandenburg and M. Flesch, Effects of Higgs sector CP-violation in top quark pair production at the LHC, hep-ph/9812387 [SPIRES].
  48. [48]
    J. Gallicchio et al., Multivariate discrimination and the Higgs + W/Z search, JHEP 04 (2011) 069 [arXiv:1010.3698] [SPIRES].CrossRefADSGoogle Scholar
  49. [49]
    A. Brandenburg, Z.G. Si and P. Uwer, QCD-corrected spin analysing power of jets in decays of polarized top quarks, Phys. Lett. B 539 (2002) 235 [hep-ph/0205023] [SPIRES].ADSGoogle Scholar
  50. [50]
    Y. Gao et al., Spin determination of single-produced resonances at hadron colliders, Phys. Rev. D 81 (2010) 075022 [arXiv:1001.3396] [SPIRES].ADSGoogle Scholar
  51. [51]
    K. Melnikov and M. Schulze, Top quark spin correlations at the Tevatron and the LHC, Phys. Lett. B 700 (2011) 17 [arXiv:1103.2122] [SPIRES].ADSGoogle Scholar
  52. [52]
    Y. Bai and Z. Han, Top-antitop and top-top resonances in the dilepton channel at the CERN LHC, JHEP 04 (2009) 056 [arXiv:0809.4487] [SPIRES].CrossRefADSGoogle Scholar
  53. [53]
    L. Landau, Dokl. Akad. Nawk (USSR) 60 (1948) 207.Google Scholar
  54. [54]
    C.-N. Yang, Selection rules for the dematerialization of a particle into two photons, Phys. Rev. 77 (1950) 242 [SPIRES].CrossRefMATHADSGoogle Scholar
  55. [55]
    J. Alwall et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [SPIRES].CrossRefADSGoogle Scholar
  56. [56]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].CrossRefADSGoogle Scholar
  57. [57]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B 641 (2006) 57 [hep-ph/0512210] [SPIRES].ADSGoogle Scholar
  58. [58]
    K. Rehermann and B. Tweedie, Efficient identification of boosted semileptonic top quarks at the LHC, JHEP 03 (2011) 059 [arXiv:1007.2221] [SPIRES].CrossRefADSGoogle Scholar
  59. [59]
    ATLAS collaboration, Prospects for early \( t\bar{t} \) resonance searches in ATLAS, ATL-PHYS-PUB-2010-008 (2009).Google Scholar
  60. [60]
    J. Thaler and L.-T. Wang, Strategies to Identify Boosted Tops, JHEP 07 (2008) 092 [arXiv:0806.0023] [SPIRES].CrossRefADSGoogle Scholar
  61. [61]
    ATLAS collaboration, Reconstruction of high mass \( t\bar{t} \) resonances in the lepton + jets channel, ATL-PHYS-PUB-2009-81 (2009).Google Scholar
  62. [62]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [SPIRES].CrossRefADSGoogle Scholar
  63. [63]
    L. Sonnenschein, Analytical solution of \( t\bar{t} \) dilepton equations, Phys. Rev. D 73 (2006) 054015 [hep-ph/0603011] [SPIRES].ADSGoogle Scholar
  64. [64]
    CDF collaboration, T. Affolder et al., Measurement of the top quark mass with the Collider Detector at Fermilab, Phys. Rev. D 63 (2001) 032003 [hep-ex/0006028] [SPIRES].ADSGoogle Scholar
  65. [65]
    U. Baur and L.H. Orr, High p T top quarks at the Large Hadron Collider, Phys. Rev. D 76 (2007) 094012 [arXiv:0707.2066] [SPIRES].ADSGoogle Scholar
  66. [66]
    P. Konar, K. Kong and K.T. Matchev, \( \sqrt {{{{\hat{s}}_{\min }}}} \) : a global inclusive variable for determining the mass scale of new physics in events with missing energy at hadron colliders, JHEP 03 (2009) 085 [arXiv:0812.1042] [SPIRES].CrossRefADSGoogle Scholar
  67. [67]
    P. Konar, K. Kong, K.T. Matchev and M. Park, RECO level \( {\sqrt {s}_{\min }} \) and subsystem \( {\sqrt {s}_{\min }} \) : improved global inclusive variables for measuring the new physics mass scale in missing energy events at hadron colliders, JHEP 06 (2011) 041 [arXiv:1006.0653] [SPIRES].CrossRefADSGoogle Scholar
  68. [68]
    H. Davoudiasl, S. Gopalakrishna and A. Soni, Big signals of little Randall-Sundrum models, Phys. Lett. B 686 (2010) 239 [arXiv:0908.1131] [SPIRES].ADSGoogle Scholar
  69. [69]
    J.C. Collins and D.E. Soper, Angular distribution of dileptons in high-energy hadron collisions, Phys. Rev. D 16 (1977) 2219 [SPIRES].ADSGoogle Scholar
  70. [70]
    G. Brooijmans, High pT hadronic top quark identification. Part I: jet mass and ysplitter, ATL-PHYS-CONF-2008-008 (2008).Google Scholar
  71. [71]
    D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top tagging: a method for identifying boosted hadronically decaying top quarks, Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848] [SPIRES].CrossRefADSGoogle Scholar
  72. [72]
    L.G. Almeida et al., Substructure of high-p T jets at the LHC, Phys. Rev. D 79 (2009) 074017 [arXiv:0807.0234] [SPIRES].ADSMathSciNetGoogle Scholar
  73. [73]
    L.G. Almeida, S.J. Lee, G. Perez, G. Sterman and I. Sung, Template overlap method for massive jets, Phys. Rev. D 82 (2010) 054034 [arXiv:1006.2035] [SPIRES].ADSGoogle Scholar
  74. [74]
    T. Plehn, M. Spannowsky, M. Takeuchi and D. Zerwas, Stop reconstruction with tagged tops, JHEP 10 (2010) 078 [arXiv:1006.2833] [SPIRES].CrossRefADSGoogle Scholar
  75. [75]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Techniques for improved heavy particle searches with jet substructure, Phys. Rev. D 80 (2009) 051501 [arXiv:0903.5081] [SPIRES].ADSGoogle Scholar
  76. [76]
    J. Thaler and K. Van Tilburg, Identifying boosted objects with N-subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [SPIRES].CrossRefADSGoogle Scholar
  77. [77]
    A. Abdesselam et al., Boosted objects: a probe of beyond the Standard Model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [SPIRES].CrossRefADSGoogle Scholar
  78. [78]
    CDF collaboration, T. Aaltonen et al., First measurement of the \( t\bar{t} \) differential cross section \( {{{d\sigma }} \left/ {{d{M_{t\bar{t}}}}} \right.} \) in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. Lett. 102 (2009) 222003 [arXiv:0903.2850] [SPIRES].CrossRefADSGoogle Scholar
  79. [79]
    D0 collaboration, V.M. Abazov et al., Search for t anti-t resonances in the lepton plus jets final state in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96 \) TeV, Phys. Lett. B 668 (2008) 98 [arXiv:0804.3664] [SPIRES].ADSGoogle Scholar
  80. [80]
    ATLAS collaboration, G. Aad et al., Search for new physics in dijet mass and angular distributions in pp collisions at \( \sqrt {{(s}} ) = 7 \) TeV measured with the ATLAS detector, New J. Phys. 13 (2011) 053044 [arXiv:1103.3864] [SPIRES].CrossRefADSGoogle Scholar
  81. [81]
    CMS collaboration, V. Khachatryan et al., Measurement of dijet angular distributions and search for quark compositeness in pp collisions at 7 TeV, Phys. Rev. Lett. 106 (2011) 201804 [arXiv:1102.2020] [SPIRES].CrossRefADSGoogle Scholar
  82. [82]
    CMS collaboration, Search for resonances in semi-leptonic top-pair decays close to production threshold, CMS PAS TOP-10-007 (2011).Google Scholar
  83. [83]
    W. Bernreuther and Z.-G. Si, Distributions and correlations for top quark pair production and decay at the Tevatron and LHC, Nucl. Phys. B 837 (2010) 90 [arXiv:1003.3926] [SPIRES].CrossRefADSGoogle Scholar
  84. [84]
    K. Melnikov and M. Schulze, NLO QCD corrections to top quark pair production and decay at hadron colliders, JHEP 08 (2009) 049 [arXiv:0907.3090] [SPIRES].CrossRefADSGoogle Scholar
  85. [85]
    K. Melnikov and M. Schulze, NLO QCD corrections to top quark pair production in association with one hard jet at hadron colliders, Nucl. Phys. B 840 (2010) 129 [arXiv:1004.3284] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Department of Physics and AstronomyJohns Hopkins UniversityBaltimoreU.S.A.
  2. 2.Physics DepartmentBoston UniversityBostonU.S.A.

Personalised recommendations