Journal of High Energy Physics

, 2011:43 | Cite as

One-loop helicity amplitudes for top quark pair production in Randall-Sundrum model

  • Hua Xing Zhu
  • Chong Sheng Li
  • Liang Dai
  • Jun Gao
  • Jian Wang
  • C.-P. Yuan


In this paper, we show how to calculate analytically the one-loop helicity amplitudes for the process \( q\bar{q} \to t\bar{t} \) induced by KK gluon, using the spinor helicity formalism. A minimal set of Feynman rules which are uniquely fixed by gauge invariance and the color representation of the KK gluon are derived and used in the calculation. Our results can be applied to a variety of models containing a massive color octet vector boson.


NLO Computations Field Theories in Higher Dimensions 


  1. [1]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [SPIRES].CrossRefMATHADSMathSciNetGoogle Scholar
  2. [2]
    B. Lillie, L. Randall and L.-T. Wang, The bulk RS KK-gluon at the LHC, JHEP 09 (2007) 074 [hep-ph/0701166] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    K. Agashe, A. Belyaev, T. Krupovnickas, G. Perez and J. Virzi, LHC signals from warped extra dimensions, Phys. Rev. D 77 (2008) 015003 [hep-ph/0612015] [SPIRES].ADSGoogle Scholar
  4. [4]
    M. Guchait, F. Mahmoudi and K. Sridhar, Tevatron constraint on the Kaluza-Klein gluon of the bulk Randall-Sundrum model, JHEP 05 (2007) 103 [hep-ph/0703060] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    B. Lillie, J. Shu and T.M.P. Tait, Kaluza-Klein gluons as a diagnostic of warped models, Phys. Rev. D 76 (2007) 115016 [arXiv:0706.3960] [SPIRES].ADSGoogle Scholar
  6. [6]
    A. Djouadi, G. Moreau and R.K. Singh, Kaluza-Klein excitations of gauge bosons at the LHC, Nucl. Phys. B 797 (2008) 1 [arXiv:0706.4191] [SPIRES].ADSGoogle Scholar
  7. [7]
    R. Frederix and F. Maltoni, Top pair invariant mass distribution: a window on new physics, JHEP 01 (2009) 047 [arXiv:0712.2355] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    U. Baur and L.H. Orr, Searching for \( t\bar{t} \) resonances at the Large Hadron Collider, Phys. Rev. D 77 (2008) 114001 [arXiv:0803.1160] [SPIRES].ADSGoogle Scholar
  9. [9]
    CDF collaboration, T. Aaltonen et al., Evidence for a mass dependent forward-backward asymmetry in top quark pair production, Phys. Rev. D 83 (2011) 112003 [arXiv:1101.0034] [SPIRES].ADSGoogle Scholar
  10. [10]
    M.T. Bowen, S.D. Ellis and D. Rainwater, Standard model top quark asymmetry at the Fermilab Tevatron, Phys. Rev. D 73 (2006) 014008 [hep-ph/0509267] [SPIRES].ADSGoogle Scholar
  11. [11]
    O. Antunano, J.H. Kuhn and G. Rodrigo, Top quarks, axigluons and charge asymmetries at hadron colliders, Phys. Rev. D 77 (2008) 014003 [arXiv:0709.1652] [SPIRES].ADSGoogle Scholar
  12. [12]
    D. Krohn, T. Liu, J. Shelton and L.-T. Wang, A polarized view of the top asymmetry, arXiv:1105.3743 [SPIRES].
  13. [13]
    A. Djouadi, G. Moreau and F. Richard, Forward-backward asymmetries of the bottom and top quarks in warped extra-dimensional models: LHC predictions from the LEP and Tevatron anomalies, Phys. Lett. B 701 (2011) 458 [arXiv:1105.3158] [SPIRES].ADSGoogle Scholar
  14. [14]
    P. Nason, S. Dawson and R.K. Ellis, The total cross-section for the production of heavy quarks in hadronic collisions, Nucl. Phys. B 303 (1988) 607 [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    W. Beenakker, H. Kuijf, W.L. van Neerven and J. Smith, QCD corrections to heavy quark production in \( p\bar{p} \) collisions, Phys. Rev. D 40 (1989) 54 [SPIRES].ADSGoogle Scholar
  16. [16]
    W. Beenakker, W.L.van Neerven, R. Meng, G.A. Schuler and J. Smith, QCD corrections to heavy quark production in hadron hadron collisions, Nucl. Phys. B 351 (1991) 507 [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    Q.-H. Cao, D. McKeen, J.L. Rosner, G. Shaughnessy and C.E.M. Wagner, Forward-backward asymmetry of topl quark pair production, Phys. Rev. D 81 (2010) 114004 [arXiv:1003.3461] [SPIRES].ADSGoogle Scholar
  18. [18]
    M. Bauer, F. Goertz, U. Haisch, T. Pfoh and S. Westhoff, Top-quark forward-backward asymmetry in Randall-Sundrum models beyond the leading order, JHEP 11 (2010) 039 [arXiv:1008.0742] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    B.C. Allanach, F. Mahmoudi, J.P. Skittrall and K. Sridhar, Gluon-initiated production of a Kaluza-Klein gluon in a bulk Randall-Sundrum model, JHEP 03 (2010) 014 [arXiv:0910.1350] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    H.X. Zhu et al., Hadronic top-quark pair production induced by massive color-octet vector at next-to-leading order QCD (2011).Google Scholar
  21. [21]
    S. Chang, J. Hisano, H. Nakano, N. Okada and M. Yamaguchi, Bulk standard model in the Randall-Sundrum background, Phys. Rev. D 62 (2000) 084025 [hep-ph/9912498] [SPIRES].ADSMathSciNetGoogle Scholar
  22. [22]
    S.J. Huber and Q. Shafi, Higgs mechanism and bulk gauge boson masses in the Randall-Sundrum model, Phys. Rev. D 63 (2001) 045010 [hep-ph/0005286] [SPIRES].ADSGoogle Scholar
  23. [23]
    T. Gherghetta and A. Pomarol, Bulk fields and supersymmetry in a slice of AdS, Nucl. Phys. B 586 (2000) 141 [hep-ph/0003129] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  24. [24]
    A. Pomarol, Gauge bosons in a five-dimensional theory with localized gravity, Phys. Lett. B 486 (2000) 153 [hep-ph/9911294] [SPIRES].ADSGoogle Scholar
  25. [25]
    H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Bulk gauge fields in the Randall-Sundrum model, Phys. Lett. B 473 (2000) 43 [hep-ph/9911262] [SPIRES].ADSMathSciNetGoogle Scholar
  26. [26]
    L. Randall and M.D. Schwartz, Quantum field theory and unification in AdS5, JHEP 11 (2001) 003 [hep-th/0108114] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    H. Novales-Sanchez and J.J. Toscano, Gauge invariance and quantization of Yang-Mills theories in extra dimensions, Phys. Rev. D 82 (2010) 116012 [arXiv:1008.4638] [SPIRES].ADSGoogle Scholar
  28. [28]
    A. Flores-Tlalpa, J. Montano, H. Novales-Sanchez, F. Ramirez-Zavaleta and J.J. Toscano, One-loop effects of extra dimensions on the WWγ and WWZ vertices, Phys. Rev. D 83 (2011) 016011 [arXiv:1009.0063] [SPIRES].ADSGoogle Scholar
  29. [29]
    V. Ahrens, A. Ferroglia, B.D. Pecjak and L.L. Yang, Precision predictions for the \( t + \bar{t} \) production cross section at hadron colliders, arXiv:1105.5824 [SPIRES].
  30. [30]
    M. Böhm and W. Hollik, Radiative corrections to polarized e e + annihilation in the standard electroweak model, Nucl. Phys. B 204 (1982) 45 [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    M. Czakon and A. Mitov, Inclusive heavy flavor hadroproduction in NLO QCD: the exact analytic result, Nucl. Phys. B 824 (2010) 111 [arXiv:0811.4119] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    J.G. Korner and Z. Merebashvili, One-loop corrections to four-point functions with two external massive fermions and two external massless partons, Phys. Rev. D 66 (2002) 054023 [hep-ph/0207054] [SPIRES].ADSGoogle Scholar
  33. [33]
    S. Badger, R. Sattler and V. Yundin, One-loop helicity amplitudes for \( t\bar{t} \) production at hadron colliders, Phys. Rev. D 83 (2011) 074020 [arXiv:1101.5947] [SPIRES].ADSGoogle Scholar
  34. [34]
    Z. Bern, A. De Freitas, L.J. Dixon and H.L. Wong, Supersymmetric regularization, two-loop QCD amplitudes and coupling shifts, Phys. Rev. D 66 (2002) 085002 [hep-ph/0202271] [SPIRES].ADSGoogle Scholar
  35. [35]
    Z. Kunszt, A. Signer and Z. Trócsányi, One loop helicity amplitudes for all 2 → 2 processes in QCD and N = 1 supersymmetric Yang-Mills theory, Nucl. Phys. B 411 (1994) 397 [hep-ph/9305239] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    R. Kleiss and W.J. Stirling, Spinor techniques for calculating \( p\bar{p} \to {{{{W^\pm }}} \left/ {{{Z_0}}} \right.} \)+ jets, Nucl. Phys. B 262 (1985) 235 [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    S. Badger, J.M. Campbell and R.K. Ellis, QCD corrections to the hadronic production of a heavy quark pair and a W-boson including decay correlations, JHEP 03 (2011) 027 [arXiv:1011.6647] [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
    R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002 [arXiv:0712.1851] [SPIRES].CrossRefADSGoogle Scholar
  39. [39]
    J.C. Pati and A. Salam, Are the new particles color gluons?, Phys. Rev. Lett. 34 (1975) 613 [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    L.J. Hall and A.E. Nelson, Heavy gluons and monojets, Phys. Lett. B 153 (1985) 430 [SPIRES].ADSGoogle Scholar
  41. [41]
    J.L. Hewett and T.G. Rizzo, Low-energy phenomenology of superstring inspired E 6 models, Phys. Rept. 183 (1989) 193 [SPIRES].CrossRefADSGoogle Scholar
  42. [42]
    C.T. Hill, Topcolor: top quark condensation in a gauge extension of the standard model, Phys. Lett. B 266 (1991) 419 [SPIRES].ADSGoogle Scholar
  43. [43]
    K.D. Lane and M.V. Ramana, Walking technicolor signatures at hadron colliders, Phys. Rev. D 44 (1991) 2678 [SPIRES].ADSGoogle Scholar
  44. [44]
    T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [SPIRES].ADSGoogle Scholar
  45. [45]
    P. Ferrario and G. Rodrigo, Constraining heavy colored resonances from top-antitop quark events, Phys. Rev. D 80 (2009) 051701 [arXiv:0906.5541] [SPIRES].ADSGoogle Scholar
  46. [46]
    D.E. Morrissey, T. Plehn and T.M.P. Tait, Physics searches at the LHC, arXiv:0912.3259 [SPIRES].
  47. [47]
    R.S. Chivukula, E.H. Simmons and C.P. Yuan, Axigluons cannot explain the observed top quark forward-backward asymmetry, Phys. Rev. D 82 (2010) 094009 [arXiv:1007.0260] [SPIRES].ADSGoogle Scholar
  48. [48]
    B. Xiao, Y.-K. Wang and S.-H. Zhu, New color-octet vector boson?, arXiv:1011.0152 [SPIRES].
  49. [49]
    Y. Bai, J.L. Hewett, J. Kaplan and T.G. Rizzo, LHC predictions from a Tevatron anomaly in the top quark forward-backward asymmetry, JHEP 03 (2011) 003 [arXiv:1101.5203] [SPIRES].CrossRefADSGoogle Scholar
  50. [50]
    A.R. Zerwekh, The axigluon, a four-site model and the top quark forward-backward asymmetry at the Tevatron, arXiv:1103.0956 [SPIRES].
  51. [51]
    J. Shu, K. Wang and G. Zhu, A revisit to top quark forward-backward asymmetry, arXiv:1104.0083 [SPIRES].
  52. [52]
    R. Barcelo, A. Carmona, M. Masip and J. Santiago, Gluon excitations in \( t\bar{t} \) production at hadron colliders, Phys. Rev. D 84 (2011) 014024 [arXiv:1105.3333] [SPIRES].ADSGoogle Scholar
  53. [53]
    U. Haisch and S. Westhoff, Massive color-octet bosons: bounds on effects in top-quark pair production, arXiv:1106.0529 [SPIRES].
  54. [54]
    A. Denner and S. Dittmaier, The complex-mass scheme for perturbative calculations with unstable particles, Nucl. Phys. Proc. Suppl. 160 (2006) 22 [hep-ph/0605312] [SPIRES].CrossRefADSGoogle Scholar
  55. [55]
    A. van Hameren, OneLOop: for the evaluation of one-loop scalar functions, Comput. Phys. Commun. 182 (2011) 2427 [arXiv:1007.4716] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Hua Xing Zhu
    • 1
  • Chong Sheng Li
    • 1
  • Liang Dai
    • 1
  • Jun Gao
    • 1
  • Jian Wang
    • 1
  • C.-P. Yuan
    • 2
  1. 1.Department of Physics and State Key Laboratory of Nuclear Physics and TechnologyPeking UniversityBeijingChina
  2. 2.Department of Physics and AstronomyMichigan State UniversityEast LansingU.S.A.

Personalised recommendations