Advertisement

Journal of High Energy Physics

, 2011:42 | Cite as

Trimaximal neutrino mixing from vacuum alignment in A 4 and S 4 models

  • Stephen F. King
  • Christoph Luhn
Article

Abstract

Recent T2K results indicate a sizeable reactor angle θ 13 which would rule out exact tri-bimaximal lepton mixing. We study the vacuum alignment of the Altarelli-Feruglio A 4 family symmetry model including additional flavons in the 1′ and 1″ representations and show that it leads to trimaximal mixing in which the second column of the lepton mixing matrix consists of the column vector \( {{{{{\left( {1,1,1} \right)}^T}}} \left/ {{\sqrt {3} }} \right.} \), with a potentially large reactor angle. In order to limit the reactor angle and control the higher order corrections, we propose a renormalisable S 4 model in which the 1′ and 1″ flavons of A 4 are unified into a doublet of S 4 which is spontaneously broken to A 4 by a flavon which enters the neutrino sector at higher order. We study the vacuum alignment in the S 4 model and show that it predicts accurate trimaximal mixing with approximate tri-bimaximal mixing, leading to a new mixing sum rule testable in future neutrino experiments. Both A 4 and S 4 models preserve form dominance and hence predict zero leptogenesis, up to renormalisation group corrections.

Keywords

Neutrino Physics Discrete and Finite Symmetries Beyond Standard Model 

References

  1. [1]
    T2K collaboration, K. Abe et al., Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    G.L. Fogli, E. Lisi, A. Marrone, A. Palazzo and A.M. Rotunno, Evidence of θ 13 > 0 from global neutrino data analysis, arXiv:1106. 6028 [SPIRES].
  3. [3]
    P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [SPIRES].ADSGoogle Scholar
  4. [4]
    N. Haba, A. Watanabe and K. Yoshioka, Twisted flavors and tri/bi-maximal neutrino mixing, Phys. Rev. Lett. 97 (2006) 041601 [hep-ph/0603116] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    X.-G. He and A. Zee, Minimal modification to the tri-bimaximal neutrino mixing, Phys. Lett. B 645 (2007) 427 [hep-ph/607163] [SPIRES]ADSGoogle Scholar
  6. [6]
    W. Grimus and L. Lavoura, A model for trimaximal lepton mixing, JHEP 09 (2008) 106 [arXiv:0809.0226] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    H. Ishimori, Y. Shimizu, M. Tanimoto and A. Watanabe, Neutrino masses and mixing from S 4 flavor twisting, Phys. Rev. D 83 (2011) 033004 [arXiv:1010.3805] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    X.-G. He and A. Zee, Minimal modification to tri-bimaximal mixing, arXiv:1106.4359 [SPIRES].
  9. [9]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [SPIRES].ADSGoogle Scholar
  10. [10]
    E. Ma and G. Rajasekaran, Softly broken A 4 symmetry for nearly degenerate neutrino masses, Phys. Rev. D 64 (2001) 113012 [hep-ph/0106291] [SPIRES].ADSGoogle Scholar
  11. [11]
    G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions, Nucl. Phys. B 720 (2005) 64 [hep-ph/0504165] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing, A 4 and the modular symmetry, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [SPIRES].ADSGoogle Scholar
  13. [13]
    E. Ma and D. Wegman, Nonzero θ 13 for neutrino mixing in the context of A 4 symmetry, Phys. Rev. Lett. 107 (2011) 061803 [arXiv:1106.4269] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    Y. Shimizu, M. Tanimoto and A. Watanabe, Breaking tri-bimaximal mixing and large θ 13, Prog. Theor. Phys. 126 (2011) 81 [arXiv:1105.2929] [SPIRES].CrossRefzbMATHADSGoogle Scholar
  15. [15]
    I. de Medeiros Varzielas and L. Merlo, Ultraviolet completion of flavour models, JHEP 02 (2011) 062 [arXiv:1011.6662] [SPIRES].CrossRefGoogle Scholar
  16. [16]
    M.-C. Chen and S.F. King, A 4 see-saw models and form dominance, JHEP 06 (2009) 072 [arXiv:0903.0125] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  17. [17]
    S. Choubey, S.F. King and M. Mitra, On the vanishing of the CP asymmetry in leptogenesis due to form dominance, Phys. Rev. D 82 (2010) 033002 [arXiv:1004.3756] [SPIRES].ADSGoogle Scholar
  18. [18]
    S.F. King and C. Luhn, On the origin of neutrino flavour symmetry, JHEP 10 (2009) 093 [arXiv:0908.1897] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    I.K. Cooper, S.F. King and C. Luhn, work in progress.Google Scholar
  20. [20]
    T.J.Burrowsand S.F.King, A 4 Family Symmetry from SU(5) SUSY GUTs in 6D, Nucl. Phys. B 835 (2010) 174 [arXiv:0909.1433] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    T.J.Burrowsand S.F.King, A 4 × SU(5) SUSY GUT of flavour in 8D, Nucl. Phys. B 842 (2011) 107 [arXiv:1007.2310] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    C. Hagedorn, S.F. King and C. Luhn, A SUSY GUT of flavour with S 4 × SU(5) to NLO, JHEP 06 (2010) 048 [arXiv:1003.4249] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    S. Antusch, S.F. King, C. Luhn and M. Spinrath, Right unitarity triangles and tri-bimaximal mixing from discrete symmetries and unification, Nucl. Phys. B 850 (2011) 477 [arXiv:1103.5930] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    S.F. King, Parametrizing the lepton mixing matrix in terms of deviations from tri-bimaximal mixing, Phys. Lett. B 659 (2008) 244 [arXiv:0710.0530] [SPIRES].ADSGoogle Scholar
  25. [25]
    S.F. King, Tri-bimaximal neutrino mixing and θ 13, Phys. Lett. B 675 (2009) 347 [arXiv:0903.3199] [SPIRES].ADSGoogle Scholar
  26. [26]
    S. Morisi, K.M. Patel and E. Peinado, Model for T2K indication with maximal atmospheric angle and tri-maximal solar angle, arXiv:1107.0696 [SPIRES].
  27. [27]
    S.-F. Ge, D.A. Dicus and W.W. Repko, Z 2 symmetry prediction for the leptonic Dirac CP phase, Phys. Lett. B 702 (2011) 220 [arXiv:1104.0602] [SPIRES].ADSGoogle Scholar
  28. [28]
    H.-J.HeandF.-R.Yin, Common origin of μ-τ and CP breaking in neutrino seesaw, baryon asymmetry and hidden flavor symmetry, Phys. Rev. D 84 (2011) 033009 [arXiv:1104.2654] [SPIRES].ADSGoogle Scholar
  29. [29]
    Z.-z. Xing, The T2K indication of relatively large θ 13 and a natural perturbation to the democratic neutrino mixing Pattern, arXiv:1106.3244 [SPIRES].
  30. [30]
    S. Zhou, Relatively large θ 13 and nearly maximal θ 23 from the approximate S3 symmetry of lepton mass matrices, arXiv:1106.4808 [SPIRES].
  31. [31]
    T. Araki, Getting at large θ 13 with almost maximal θ 23 from tri-bimaximal mixing, Phys. Rev. D 84 (2011) 037301 [arXiv:1106.5211] [SPIRES].ADSGoogle Scholar
  32. [32]
    N. Haba and R. Takahashi, Predictions via large θ 13 from cascades, Phys. Lett. B 702 (2011) 388 [arXiv:1106.5926] [SPIRES].ADSGoogle Scholar
  33. [33]
    D. Meloni, Bimaximal mixing and large θ 13 in a SUSY SU(5) model based on S 4, arXiv:1107.0221 [SPIRES].
  34. [34]
    W.Chaoand Y.-J.Zheng, Relatively large θ 13 from modification to the tri-bimaximal, bimaximal and democratic neutrino mixing matrices, arXiv:1107.0738 [SPIRES].
  35. [35]
    H. Zhang and S. Zhou, Radiative corrections and explicit perturbations to the tetra-maximal neutrino mixing with large θ 13, arXiv:1107.1097 [SPIRES].
  36. [36]
    X. Chu, M. Dhen and T. Hambye, Relations among neutrino observables in the light of a large θ 13 angle, arXiv:1107.1589 [SPIRES].
  37. [37]
    P.S. Bhupal Dev, R.N. Mohapatra and M. Severson, Neutrino mixings in SO(10) with type II seesaw and θ 13, arXiv:1107.2378 [SPIRES].
  38. [38]
    R.d.A. Toorop, F. Feruglio and C. Hagedorn, Discrete flavour symmetries in light of T2K, arXiv:1107.3486 [SPIRES].
  39. [39]
    S. Antusch and V. Maurer, Large θ 13MNS and quark-lepton mass ratios in unified flavour models, arXiv:1107.3728 [SPIRES].
  40. [40]
    J.A.EscobarandC.Luhn, The flavor group ∆(6n 2 ), J. Math. Phys. 50 (2009) 013524 [arXiv:0809.0639] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  41. [41]
    C. Luhn, S. Nasri and P. Ramond, The flavor group ∆(3n 2 ), J. Math. Phys. 48 (2007) 073501 [hep-th/0701188] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  42. [42]
    F. Bazzocchi, L. Merlo and S. Morisi, Fermion masses and mixings in a S 4-based model, Nucl. Phys. B 816 (2009) 204 [arXiv:0901.2086] [SPIRES].CrossRefzbMATHADSGoogle Scholar
  43. [43]
    S.F. King and C. Luhn, A new family symmetry for SO(10) GUTs, Nucl. Phys. B 820 (2009) 269 [arXiv:0905.1686] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  44. [44]
    S.F. King, Vacuum misalignment corrections to tri-bimaximal mixing and form dominance, JHEP 01 (2011) 115 [arXiv:1011.6167] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.School of Physics and AstronomyUniversity of SouthamptonSouthamptonU.K.

Personalised recommendations