Advertisement

Journal of High Energy Physics

, 2011:38 | Cite as

A non-relativistic logarithmic conformal field theory from a holographic point of view

  • Eric A. Bergshoeff
  • Sjoerd de Haan
  • Wout Merbis
  • Jan Rosseel
Open Access
Article

Abstract

We study a fourth-order derivative scalar field configuration in a fixed Lifshitz background. Using an auxiliary field we rewrite the equations of motion as two coupled second order equations. We specialize to the limit that the mass of the scalar field degenerates with that of the auxiliary field and show that logarithmic modes appear. Using non-relativistic holographic methods we calculate the two-point correlation functions of the boundary operators in this limit and find evidence for a non-relativistic logarithmic conformal field theory at the boundary.

Keywords

Gauge-gravity correspondence Holography and condensed matter physics (AdS/CMT) AdS-CFT Correspondence 

References

  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].zbMATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [SPIRES].ADSMathSciNetGoogle Scholar
  3. [3]
    D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [SPIRES].ADSMathSciNetGoogle Scholar
  4. [4]
    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    D. Grumiller and N. Johansson, Instability in cosmological topologically massive gravity at the chiral point, JHEP 07 (2008) 134 [arXiv:0805.2610] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    S. Ertl, D. Grumiller and N. Johansson, Erratum to ‘Instability in cosmological topologically massive gravity at the chiral point’, arXiv:0805.2610, arXiv:0910.1706 [SPIRES].
  7. [7]
    K. Skenderis, M. Taylor and B.C. van Rees, Topologically massive gravity and the AdS/CFT correspondence, JHEP 09 (2009) 045 [arXiv:0906.4926] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    D. Grumiller and I. Sachs, AdS 3/LCFT 2 — correlators in cosmological topologically massive gravity, JHEP 03 (2010) 012 [arXiv:0910.5241] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    D. Grumiller and O. Hohm, AdS 3/LCFT 2 — correlators in new massive gravity, Phys. Lett. B 686 (2010) 264 [arXiv:0911.4274] [SPIRES].ADSMathSciNetGoogle Scholar
  10. [10]
    M. Alishahiha and A. Naseh, Holographic renormalization of new massive gravity, Phys. Rev. D 82 (2010) 104043 [arXiv:1005.1544] [SPIRES].ADSMathSciNetGoogle Scholar
  11. [11]
    H. Lü and C.N. Pope, Critical gravity in four dimensions, Phys. Rev. Lett. 106 (2011) 181302 [arXiv:1101.1971] [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    S. Deser et al., Critical points of D-dimensional extended gravities, Phys. Rev. D 83 (2011) 061502 [arXiv:1101.4009] [SPIRES].ADSGoogle Scholar
  13. [13]
    M. Alishahiha and R. Fareghbal, D-dimensional log gravity, Phys. Rev. D 83 (2011) 084052 [arXiv:1101.5891] [SPIRES].ADSGoogle Scholar
  14. [14]
    E.A. Bergshoeff, O. Hohm, J. Rosseel and P.K. Townsend, Modes of log gravity, Phys. Rev. D 83 (2011) 104038 [arXiv:1102.4091] [SPIRES].ADSGoogle Scholar
  15. [15]
    M. Porrati and M.M. Roberts, Ghosts of critical gravity, Phys. Rev. D 84 (2011) 024013 [arXiv:1104.0674] [SPIRES].ADSGoogle Scholar
  16. [16]
    H. Lü, Y. Pang and C.N. Pope, Conformal gravity and extensions of critical gravity, arXiv:1106.4657 [SPIRES].
  17. [17]
    S. Deser, R. Jackiw and S. Templeton, Topologically massive gauge theories, Ann. Phys. 140 (1982) 372 [Erratum ibid. 185 (1988) 406] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive gravity in three dimensions, Phys. Rev. Lett. 102 (2009) 201301 [arXiv:0901.1766] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    V. Gurarie, Logarithmic operators in conformal field theory, Nucl. Phys. B 410 (1993) 535 [hep-th/9303160] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    M. Flohr, Bits and pieces in logarithmic conformal field theory, Int. J. Mod. Phys. A 18 (2003) 4497 [hep-th/0111228] [SPIRES].ADSMathSciNetGoogle Scholar
  21. [21]
    M.R. Gaberdiel, An algebraic approach to logarithmic conformal field theory, Int. J. Mod. Phys. A 18 (2003) 4593 [hep-th/0111260] [SPIRES].ADSMathSciNetGoogle Scholar
  22. [22]
    A.M. Ghezelbash, M. Khorrami and A. Aghamohammadi, Logarithmic conformal field theories and AdS correspondence, Int. J. Mod. Phys. A 14 (1999) 2581 [hep-th/9807034] [SPIRES].ADSMathSciNetGoogle Scholar
  23. [23]
    I.I. Kogan, Singletons and logarithmic CFT in AdS/CFT correspondence, Phys. Lett. B 458 (1999) 66 [hep-th/9903162] [SPIRES].ADSGoogle Scholar
  24. [24]
    Y.S. Myung and H.W. Lee, Gauge bosons and the AdS 3 /LCFT 2 correspondence, JHEP 10 (1999) 009 [hep-th/9904056] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    P. Hořava, Membranes at quantum criticality, JHEP 03 (2009) 020 [arXiv:0812.4287] [SPIRES].ADSGoogle Scholar
  26. [26]
    P. Hořava and C.M. Melby-Thompson, Anisotropic conformal infinity, Gen. Rel. Grav. 43 (2011) 1391 [arXiv:0909.3841] [SPIRES].zbMATHADSCrossRefGoogle Scholar
  27. [27]
    A. Hosseiny and S. Rouhani, Logarithmic correlators in non-relativistic conformal field theory, arXiv:1001.1036 [SPIRES].
  28. [28]
    A. Hosseiny and A. Naseh, On holographic realization of logarithmic GCA, arXiv:1101.2126 [SPIRES].
  29. [29]
    M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [SPIRES].ADSMathSciNetGoogle Scholar
  30. [30]
    K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [SPIRES].zbMATHMathSciNetCrossRefGoogle Scholar
  31. [31]
    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [SPIRES].
  32. [32]
    B.C. van Rees, Holographic renormalization for irrelevant operators and multi-trace counterterms, JHEP 08 (2011) 093 [arXiv:1102.2239] [SPIRES].CrossRefGoogle Scholar
  33. [33]
    M. Guica, K. Skenderis, M. Taylor and B.C. van Rees, Holography for Schrödinger backgrounds, JHEP 02 (2011) 056 [arXiv:1008.1991] [SPIRES].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Eric A. Bergshoeff
    • 1
  • Sjoerd de Haan
    • 1
  • Wout Merbis
    • 1
  • Jan Rosseel
    • 1
  1. 1.Centre for Theoretical PhysicsUniversity of GroningenGroningenThe Netherlands

Personalised recommendations