Journal of High Energy Physics

, 2011:25 | Cite as

Double field theory for double D-branes

  • Cecilia Albertsson
  • Shou-Huang Dai
  • Pei-Wen Kao
  • Feng-Li Lin
Article

Abstract

We consider Hull’s doubled formalism for open strings on D-branes in flat space and construct the corresponding effective double field theory. We show that the worldsheet boundary conditions of the doubled formalism describe in a unified way a T-dual pair of D-branes, which we call double D-branes. We evaluate the one-loop beta function for the boundary gauge coupling and then obtain the effective field theory for the double D-branes. The effective field theory is described by a DBI action of double fields. The T-duality covariant form of this DBI action is thus a kind of “master” action, which describes all the double D-brane configurations related by T-duality transformations. We discuss a number of aspects of this effective theory.

Keywords

D-branes Bosonic Strings Conformal Field Models in String Theory String Duality 

References

  1. [1]
    K. Kikkawa and M. Yamasaki, Casimir effects in superstring theories, Phys. Lett. B 149 (1984) 357 [SPIRES].ADSMathSciNetGoogle Scholar
  2. [2]
    T.H. Buscher, A symmetry of the string background field equations, Phys. Lett. B 194 (1987) 59 [SPIRES].ADSMathSciNetGoogle Scholar
  3. [3]
    T.H. Buscher, Path integral derivation of quantum duality in nonlinear σ-models, Phys. Lett. B 201 (1988) 466 [SPIRES].ADSMathSciNetGoogle Scholar
  4. [4]
    A. Giveon, M. Porrati and E. Rabinovici, Target space duality in string theory, Phys. Rept. 244 (1994) 77 [hep-th/9401139] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    A. Dabholkar and C. Hull, Duality twists, orbifolds and fluxes, JHEP 09 (2003) 054 [hep-th/0210209] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    S. Kachru, M.B. Schulz, P.K. Tripathy and S.P. Trivedi, New supersymmetric string compactifications, JHEP 03 (2003) 061 [hep-th/0211182] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    S. Hellerman, J. McGreevy and B. Williams, Geometric constructions of nongeometric string theories, JHEP 01 (2004) 024 [hep-th/0208174] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    A. Flournoy, B. Wecht and B. Williams, Constructing nongeometric vacua in string theory, Nucl. Phys. B 706 (2005) 127 [hep-th/0404217] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    M.B. Schulz, T-folds, doubled geometry and the SU(2) WZW model, arXiv:1106.6291 [SPIRES].
  10. [10]
    C.M. Hull, A geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    A. Dabholkar and C. Hull, Generalised T-duality and non-geometric backgrounds, JHEP 05 (2006) 009 [hep-th/0512005] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    C.M. Hull, Global aspects of T-duality, gauged σ-models and T-folds, JHEP 10 (2007) 057 [hep-th/0604178] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    C.M. Hull, Doubled geometry and T-folds, JHEP 07 (2007) 080 [hep-th/0605149] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    M.J. Duff, Hidden string symmetries?, Phys. Lett. B 173 (1986) 289 [SPIRES].ADSMathSciNetGoogle Scholar
  15. [15]
    M.J. Duff, Duality rotations in string theory, Nucl. Phys. B 335 (1990) 610 [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys. B 350 (1991) 395 [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    A.A. Tseytlin, Duality symmetric formulation of string world sheet dynamics, Phys. Lett. B 242 (1990) 163 [SPIRES].ADSMathSciNetGoogle Scholar
  18. [18]
    J. Maharana and J.H. Schwarz, Noncompact symmetries in string theory, Nucl. Phys. B 390 (1993) 3 [hep-th/9207016] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    J.H. Schwarz and A. Sen, Duality symmetric actions, Nucl. Phys. B 411 (1994) 35 [hep-th/9304154] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    R. Floreanini and R. Jackiw, Selfdual fields as charge density solitons, Phys. Rev. Lett. 59 (1987) 1873 [SPIRES].ADSCrossRefGoogle Scholar
  21. [21]
    D.S. Berman, N.B. Copland and D.C. Thompson, Background field equations for the duality symmetric string, Nucl. Phys. B 791 (2008) 175 [arXiv:0708.2267] [SPIRES].ADSMathSciNetGoogle Scholar
  22. [22]
    P. Pasti, D.P. Sorokin and M. Tonin, Duality symmetric actions with manifest space-time symmetries, Phys. Rev. D 52 (1995) 4277 [hep-th/9506109] [SPIRES].ADSMathSciNetGoogle Scholar
  23. [23]
    P. Pasti, D.P. Sorokin and M. Tonin, Space-time symmetries in duality symmetric models, hep-th/9509052 [SPIRES].
  24. [24]
    P. Pasti, D.P. Sorokin and M. Tonin, On Lorentz invariant actions for chiral p-forms, Phys. Rev. D 55 (1997) 6292 [hep-th/9611100] [SPIRES].ADSMathSciNetGoogle Scholar
  25. [25]
    C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    O. Hohm and S.K. Kwak, Frame-like geometry of double field theory, J. Phys. A 44 (2011) 085404 [arXiv:1011.4101] [SPIRES].ADSMathSciNetGoogle Scholar
  30. [30]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [SPIRES].ADSGoogle Scholar
  31. [31]
    D.C. Thompson, Duality invariance: from M-theory to double field theory, arXiv:1106.4036 [SPIRES].
  32. [32]
    D.S. Berman and M.J. Perry, Generalized geometry and M-theory, JHEP 06 (2011) 074 [arXiv:1008.1763] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    D.S. Berman, H. Godazgar and M.J. Perry, SO(5, 5) duality in M-theory and generalized geometry, Phys. Lett. B 700 (2011) 65 [arXiv:1103.5733] [SPIRES].ADSMathSciNetGoogle Scholar
  34. [34]
    T. Kugo and B. Zwiebach, Target space duality as a symmetry of string field theory, Prog. Theor. Phys. 87 (1992) 801 [hep-th/9201040] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    N.B. Copland, Connecting T-duality invariant theories, arXiv:1106.1888 [SPIRES].
  36. [36]
    O. Hohm, S.K. Kwak and B. Zwiebach, Unification of type II strings and T-duality, arXiv:1106.5452 [SPIRES].
  37. [37]
    O. Hohm, S.K. Kwak and B. Zwiebach, Double field theory of type II strings, arXiv:1107.0008 [SPIRES].
  38. [38]
    A. Lawrence, M.B. Schulz and B. Wecht, D-branes in nongeometric backgrounds, JHEP 07 (2006) 038 [hep-th/0602025] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    C. Albertsson, T. Kimura and R.A. Reid-Edwards, D-branes and doubled geometry, JHEP 04 (2009) 113 [arXiv:0806.1783] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    A. Abouelsaood, C.G. Callan Jr., C.R. Nappi and S.A. Yost, Open strings in background gauge fields, Nucl. Phys. B 280 (1987) 599 [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    S. Mukhi, The geometric background field method, renormalization and the Wess-Zumino term in nonlinear σ-models, Nucl. Phys. B 264 (1986) 640 [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  42. [42]
    C.M. Hull and R.A. Reid-Edwards, Non-geometric backgrounds, doubled geometry and generalised T-duality, JHEP 09 (2009) 014 [arXiv:0902.4032] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    C.M. Hull and B. Julia, Duality and moduli spaces for time-like reductions, Nucl. Phys. B 534 (1998) 250 [hep-th/9803239] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    C.M. Hull, Timelike T-duality, de Sitter space, large-N gauge theories and topological field theory, JHEP 07 (1998) 021 [hep-th/9806146] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    D.S. Berman and N.B. Copland, The string partition function in Hull’s doubled formalism, Phys. Lett. B 649 (2007) 325 [hep-th/0701080] [SPIRES].ADSMathSciNetGoogle Scholar
  46. [46]
    D.S. Berman and D.C. Thompson, Duality symmetric strings, dilatons and O(d, d) effective actions, Phys. Lett. B 662 (2008) 279 [arXiv:0712.1121] [SPIRES].ADSMathSciNetGoogle Scholar
  47. [47]
    M. Van Raamsdonk, Blending local symmetries with matrix nonlocality in D-brane effective actions, JHEP 09 (2003) 026 [hep-th/0305145] [SPIRES].CrossRefGoogle Scholar
  48. [48]
    E. Coletti, I. Sigalov and W. Taylor, Abelian and non-Abelian vector field effective actions from string field theory, JHEP 09 (2003) 050 [hep-th/0306041] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    E. Witten, Noncommutative geometry and string field theory, Nucl. Phys. B 268 (1986) 253 [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    I. Jeon, K. Lee and J.-H. Park, Differential geometry with a projection: application to double field theory, JHEP 04 (2011) 014 [arXiv:1011.1324] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  51. [51]
    I. Jeon, K. Lee and J.-H. Park, Double field formulation of Yang-Mills theory, Phys. Lett. B 701 (2011) 260 [arXiv:1102.0419] [SPIRES].ADSMathSciNetGoogle Scholar
  52. [52]
    I. Jeon, K. Lee and J.-H. Park, Stringy differential geometry, beyond Riemann, Phys. Rev. D 84 (2011) 044022 [arXiv:1105.6294] [SPIRES].ADSGoogle Scholar
  53. [53]
    D.C. Thompson, T-duality invariant approaches to string theory, arXiv:1012.4393 [SPIRES].
  54. [54]
    R.A. Reid-Edwards, Flux compactifications, twisted tori and doubled geometry, JHEP 06 (2009) 085 [arXiv:0904.0380] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    G. Dall’Agata, N. Prezas, H. Samtleben and M. Trigiante, Gauged supergravities from twisted doubled tori and non-geometric string backgrounds, Nucl. Phys. B 799 (2008) 80 [arXiv:0712.1026] [SPIRES].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Cecilia Albertsson
    • 1
  • Shou-Huang Dai
    • 2
  • Pei-Wen Kao
    • 3
  • Feng-Li Lin
    • 2
  1. 1.Lunascape CorporationTokyoJapan
  2. 2.Department of PhysicsNational Taiwan Normal UniversityTaipeiTaiwan
  3. 3.Department of MathematicsKeio UniversityYokohamaJapan

Personalised recommendations