Journal of High Energy Physics

, 2011:13 | Cite as

Double field theory of type II strings

Article

Abstract

We use double field theory to give a unified description of the low energy limits of type IIA and type IIB superstrings. The Ramond-Ramond potentials fit into spinor representations of the duality group O(D, D) and field-strengths are obtained by acting with the Dirac operator on the potentials. The action, supplemented by a Spin+ (D, D)-covariant self-duality condition on field strengths, reduces to the IIA and IIB theories in different frames. As usual, the NS-NS gravitational variables are described through the generalized metric. Our work suggests that the fundamental gravitational variable is a hermitian element of the group Spin(D, D) whose natural projection to O(D, D) gives the generalized metric.

Keywords

Superstrings and Heterotic Strings String Duality Gauge Symmetry Space-Time Symmetries 

References

  1. [1]
    J. Polchinski, String theory, volume 2. Cambridge University Press, Cambridge U.K. (1998) [SPIRES].CrossRefGoogle Scholar
  2. [2]
    O. Hohm, S.K. Kwak and B. Zwiebach, Unification of type II strings and T-duality, arXiv:1106.5452 [SPIRES].
  3. [3]
    M. Dine, P.Y. Huet and N. Seiberg, Large and small radius in string theory, Nucl. Phys. B 322 (1989) 301 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    C.M. Hull and P.K. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109 [hep-th/9410167] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    E. Bergshoeff, C.M. Hull and T. Ortín, Duality in the type-II superstring effective action, Nucl. Phys. B 451 (1995) 547 [hep-th/9504081] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    S.F. Hassan, SO(d, d) transformations of Ramond-Ramond fields and space-time spinors, Nucl. Phys. B 583 (2000) 431 [hep-th/9912236] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  7. [7]
    S.F. Hassan, T-duality, space-time spinors and RR fields in curved backgrounds, Nucl. Phys. B 568 (2000) 145 [hep-th/9907152] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    M. Cvetič, H. Lü, C.N. Pope and K.S. Stelle, T-duality in the Green-Schwarz formalism and the massless/massive IIA duality map, Nucl. Phys. B 573 (2000) 149 [hep-th/9907202] [SPIRES].ADSGoogle Scholar
  9. [9]
    B. Kulik and R. Roiban, T-duality of the Green-Schwarz superstring, JHEP 09 (2002) 007 [hep-th/0012010] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  10. [10]
    I.A. Bandos and B. Julia, Superfield T-duality rules, JHEP 08 (2003) 032 [hep-th/0303075] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  11. [11]
    R. Benichou, G. Policastro and J. Troost, T-duality in Ramond-Ramond backgrounds, Phys. Lett. B 661 (2008) 192 [arXiv:0801.1785] [SPIRES].ADSMathSciNetGoogle Scholar
  12. [12]
    K.A. Meissner and G. Veneziano, Symmetries of cosmological superstring vacua, Phys. Lett. B 267 (1991) 33 [SPIRES].ADSMathSciNetGoogle Scholar
  13. [13]
    K.A. Meissner and G. Veneziano, Manifestly O(d, d) invariant approach to space-time dependent string vacua, Mod. Phys. Lett. A 6 (1991) 3397 [hep-th/9110004] [SPIRES].ADSMathSciNetGoogle Scholar
  14. [14]
    J. Maharana and J.H. Schwarz, Noncompact symmetries in string theory, Nucl. Phys. B 390 (1993) 3 [hep-th/9207016] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  15. [15]
    C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  17. [17]
    O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  19. [19]
    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [SPIRES].ADSGoogle Scholar
  20. [20]
    W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [SPIRES].ADSGoogle Scholar
  21. [21]
    A.A. Tseytlin, Duality symmetric formulation of string world sheet dynamics, Phys. Lett. B 242 (1990) 163 [SPIRES].ADSMathSciNetGoogle Scholar
  22. [22]
    A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys. B 350 (1991) 395 [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  23. [23]
    S.K. Kwak, Invariances and equations of motion in double field theory, JHEP 10 (2010) 047 [arXiv:1008.2746] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  24. [24]
    O. Hohm and S.K. Kwak, Frame-like geometry of double field theory, J. Phys. A 44 (2011) 085404 [arXiv:1011.4101] [SPIRES].ADSMathSciNetGoogle Scholar
  25. [25]
    O. Hohm, T-duality versus gauge symmetry, Prog. Theor. Phys. Suppl. 188 (2011) 116 [arXiv:1101.3484] [SPIRES].CrossRefMATHADSGoogle Scholar
  26. [26]
    O. Hohm, On factorizations in perturbative quantum gravity, JHEP 04 (2011) 103 [arXiv:1103.0032] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    O. Hohm and S.K. Kwak, Double field theory formulation of heterotic strings, JHEP 06 (2011) 096 [arXiv:1103.2136] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    D.S. Berman and M.J. Perry, Generalized geometry and M-theory, JHEP 06 (2011) 074 [arXiv:1008.1763] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    D.S. Berman, H. Godazgar and M.J. Perry, SO(5, 5) duality in M-theory and generalized geometry, Phys. Lett. B 700 (2011) 65 [arXiv:1103.5733] [SPIRES].ADSMathSciNetGoogle Scholar
  30. [30]
    P. West, E 11 , generalised space-time and IIA string theory, Phys. Lett. B 696 (2011) 403 [arXiv:1009.2624] [SPIRES].ADSGoogle Scholar
  31. [31]
    A. Rocen and P. West, E 11 , generalised space-time and IIA string theory: the RR sector, arXiv:1012.2744 [SPIRES].
  32. [32]
    I. Jeon, K. Lee and J.-H. Park, Differential geometry with a projection: application to double field theory, JHEP 04 (2011) 014 [arXiv:1011.1324] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  33. [33]
    I. Jeon, K. Lee and J.-H. Park, Double field formulation of Yang-Mills theory, Phys. Lett. B 701 (2011) 260 [arXiv:1102.0419] [SPIRES].ADSMathSciNetGoogle Scholar
  34. [34]
    I. Jeon, K. Lee and J.-H. Park, Stringy differential geometry, beyond Riemann, Phys. Rev. D 84 (2011) 044022 [arXiv:1105.6294] [SPIRES].ADSGoogle Scholar
  35. [35]
    N.B. Copland, Connecting T-duality invariant theories, arXiv:1106.1888 [SPIRES].
  36. [36]
    D. Andriot, M. Larfors, D. Lüst and P. Patalong, A ten-dimensional action for non-geometric fluxes, arXiv:1106.4015 [SPIRES].
  37. [37]
    D.C. Thompson, Duality invariance: from M-theory to double field theory, arXiv:1106.4036 [SPIRES].
  38. [38]
    M. Fukuma, T. Oota and H. Tanaka, Comments on T-dualities of Ramond-Ramond potentials on tori, Prog. Theor. Phys. 103 (2000) 425 [hep-th/9907132] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  39. [39]
    D. Brace, B. Morariu and B. Zumino, T-duality and Ramond-Ramond backgrounds in the matrix model, Nucl. Phys. B 549 (1999) 181 [hep-th/9811213] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  40. [40]
    D. Brace, B. Morariu and B. Zumino, Dualities of the matrix model from T-duality of the type-II string, Nucl. Phys. B 545 (1999) 192 [hep-th/9810099] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  41. [41]
    C.M. Hull, Timelike T-duality, de Sitter space, large-N gauge theories and topological field theory, JHEP 07 (1998) 021 [hep-th/9806146] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  42. [42]
    M. Gualtieri, Generalized complex geometry, Ph.D. thesis, Oxford University, Oxford U.K. (2004) [math.DG/0401221] [SPIRES].
  43. [43]
    W. Fulton and J. Harris, Representation theory: a first course, Springer Verlag Inc., New York U.S.A. (1991).MATHGoogle Scholar
  44. [44]
    E. Bergshoeff, R. Kallosh, T. Ortín, D. Roest and A. Van Proeyen, New formulations of D = 10 supersymmetry and D8-O8 domain walls, Class. Quant. Grav. 18 (2001) 3359 [hep-th/0103233] [SPIRES].CrossRefMATHADSGoogle Scholar
  45. [45]
    C. Hillmann, Generalized E 7(7) coset dynamics and D = 11 supergravity, JHEP 03 (2009) 135 [arXiv:0901.1581] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  46. [46]
    P.C. West, E 11 and M-theory, Class. Quant. Grav. 18 (2001) 4443 [hep-th/0104081] [SPIRES].CrossRefMATHADSGoogle Scholar
  47. [47]
    P.C. West, E 11 , SL(32) and central charges, Phys. Lett. B 575 (2003) 333 [hep-th/0307098] [SPIRES].ADSGoogle Scholar
  48. [48]
    T. Damour, M. Henneaux and H. Nicolai, E 10 and a ‘small tension expansion’ of M-theory, Phys. Rev. Lett. 89 (2002) 221601 [hep-th/0207267] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  49. [49]
    A. Kleinschmidt and H. Nicolai, E 10 and SO(9, 9) invariant supergravity, JHEP 07 (2004) 041 [hep-th/0407101] [SPIRES].CrossRefADSMathSciNetGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Center for Theoretical PhysicsMassachusetts Institute of TechnologyCambridgeU.S.A.

Personalised recommendations