Journal of High Energy Physics

, 2010:108

TeV scale see-saw mechanisms of neutrino mass generation, the Majorana nature of the heavy singlet neutrinos and (ββ)-decay



It is shown that the Majorana nature of the heavy neutrinos Nj having masses in the range of Mj ~ (100 - 1000) GeV and present in the TeV scale type I and inverse see-saw scenarios of neutrino mass generation, is unlikely to be observable in the currently operating and future planned accelerator experiments (including LHC) due to the existence of very strong constraints on the parameters and couplings responsible for the corresponding ∣ΔL∣= 2 processes, L being the total lepton charge. If the heavy Majorana neutrinos Nj are observed and they are associated only with the type I or inverse see-saw mechanisms and no additional TeV scale “new physics”, they will behave like Dirac fermions to a relatively high level of precision, being actually pseudo-Dirac particles. The observation of effects proving the Majorana nature of Nj would imply that these heavy neutrinos have additional relatively strong couplings to the Standard Model particles (as, e.g. in the type III see-saw scenario), or that light neutrino masses compatible with the observations are generated by a mechanism other than see-saw (e.g., radiatively at one or two loop level) in which the heavy Majorana neutrinos Nj are nevertheless involved.


Beyond Standard Model Neutrino Physics 


  1. [1]
    B.T. Cleveland et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector, Astrophys. J. 496 (1998) 505 [SPIRES].ADSCrossRefGoogle Scholar
  2. [2]
    Kamiokande collaboration, Y. Fukuda et al., Solar neutrino data covering solar cycle 22, Phys. Rev. Lett. 77 (1996) 1683 [SPIRES].ADSCrossRefGoogle Scholar
  3. [3]
    SAGE collaboration, J.N. Abdurashitov et al., Measurement of the solar neutrino capture rate with Gallium metal. III: results for the 20022007 data-taking period, Phys. Rev. C 80 (2009) 015807 [arXiv:0901.2200] [SPIRES].ADSGoogle Scholar
  4. [4]
    GALLEX collaboration, P. Anselmann et al., Solar neutrinos observed by GALLEX at Gran Sasso, Phys. Lett. B 285 (1992) 376 [SPIRES].ADSGoogle Scholar
  5. [5]
    GALLEX collaboration, W. Hampel et al., GALLEX solar neutrino observations: results for GALLEX IV, Phys. Lett. B 447 (1999) 127 [SPIRES].ADSGoogle Scholar
  6. [6]
    GNO collaboration, M. Altmann et al., Complete results for five years of GNO solar neutrino observations, Phys. Lett. B 616 (2005) 174 [hep-ex/0504037] [SPIRES].ADSGoogle Scholar
  7. [7]
    Super-Kamiokande collaboration, S. Fukuda et al., Determination of solar neutrino oscillation parameters using 1496 days of Super-Kamiokande-I data, Phys. Lett. B 539 (2002) 179 [hep-ex/0205075] [SPIRES].ADSGoogle Scholar
  8. [8]
    SNO collaboration, Q.R. Ahmad et al., Measurement of the charged current interactions produced by B -8 solar neutrinos at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 87 (2001) 071301 [nucl-ex/0106015] [SPIRES].ADSMATHCrossRefGoogle Scholar
  9. [9]
    SNO collaboration, Q.R. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    Super-Kamiokande collaboration, Y. Ashie et al., Evidence for an oscillatory signature in atmospheric neutrino oscillation, Phys. Rev. Lett. 93 (2004) 101801 [hep-ex/0404034] [SPIRES].ADSCrossRefGoogle Scholar
  12. [12]
    KamLAND collaboration, K. Eguchi et al., First results from KamLAND: evidence for reactor anti-neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802 [hep-ex/0212021] [SPIRES].ADSCrossRefGoogle Scholar
  13. [13]
    KamLAND collaboration, T. Araki et al., Measurement of neutrino oscillation with KamLAND: evidence of spectral distortion, Phys. Rev. Lett. 94 (2005) 081801 [hep-ex/0406035] [SPIRES].ADSCrossRefGoogle Scholar
  14. [14]
    Borexino collaboration, C. Arpesella et al., First real time detection of 7 Be solar neutrinos by Borexino, Phys. Lett. B 658 (2008) 101 [arXiv:0708.2251] [SPIRES].ADSGoogle Scholar
  15. [15]
    The Borexino collaboration, C. Arpesella et al., Direct measurement of the 7 Be solar neutrino flux with 192 days of Borexino data, Phys. Rev. Lett. 101 (2008) 091302 [arXiv:0805.3843] [SPIRES].ADSCrossRefGoogle Scholar
  16. [16]
    K2K collaboration, M.H. Ahn et al., Measurement of neutrino oscillation by the K2K experiment, Phys. Rev. D 74 (2006) 072003 [hep-ex/0606032] [SPIRES].ADSGoogle Scholar
  17. [17]
    MINOS collaboration, D.G. Michael et al., Observation of muon neutrino disappearance with the MINOS detectors and the NuMI neutrino beam, Phys. Rev. Lett. 97 (2006) 191801 [hep-ex/0607088] [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    MINOS collaboration, P. Adamson et al., Measurement of neutrino oscillations with the MINOS detectors in the NuMI beam, Phys. Rev. Lett. 101 (2008) 131802 [arXiv:0806.2237] [SPIRES].ADSCrossRefGoogle Scholar
  19. [19]
    B. Pontecorvo, Mesonium and anti-mesonium, Zh. Eksp. Teor. Fiz. 33 (1957) 549 [Sov. Phys. JETP 6 (1957) 429].Google Scholar
  20. [20]
    B. Pontecorvo, Inverse b-processes and lepton charge nonconservation, Zh. Eksp. Teor. Fiz. 34 (1958) 247.Google Scholar
  21. [21]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. T heor. Phys. 28 (1962) 870 [SPIRES].ADSMATHCrossRefGoogle Scholar
  22. [22]
    B. Pontecorvo, Neutrino experiments and the question of leptonic-charge conservation, Zh. Eksp. Teor. Fiz. 53 (1967) 1717 [Sov. Phys. JETP 26 (1968) 984] [SPIRES].Google Scholar
  23. [23]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].ADSGoogle Scholar
  24. [24]
    P. Minkowski, μeγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].ADSGoogle Scholar
  25. [25]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in the proceedings of the Supergravity Stony Brook Workshop, September 27–28, Stony Brook, U.S.A. (1979), P. Van Nieuwenhuizen and D. Freedman eds., North-Holland The Netherlands (1979).Google Scholar
  26. [26]
    T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, in the proceedinds of the Workshop on Unified Theories and Baryon Number in the Universe, February 13–14, Tsukuba, Japan (1979), A. Sawada and A. Sugamoto eds., Tsukuba Japan (1979).Google Scholar
  27. [27]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].ADSCrossRefGoogle Scholar
  28. [28]
    S.M. Bilenky and S.T. Petcov, Massive neutrinos and neutrino oscillations, Rev. Mod. Phys. 59 (1987) 671 [SPIRES].ADSCrossRefGoogle Scholar
  29. [29]
    R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [SPIRES].Google Scholar
  30. [30]
    R.N. Mohapatra and J.W.F. Valle, Neutrino mass and baryon-number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [SPIRES].ADSGoogle Scholar
  31. [31]
    J. Chakrabortty, TeV scale double seesaw in left-right symmetric theories, arXiv:1003.3154 [SPIRES].
  32. [32]
    C. Wei, Neutrino masses and a TeV scale seesaw mechanism, arXiv:1003.1468 [SPIRES].
  33. [33]
    F.M.L. de Almeida et al., Double seesaw mechanism in a left-right symmetric model with TeV neutrinos, Phys. Rev. D 81 (2010) 053005 [arXiv:1001.2162] [SPIRES].MathSciNetADSGoogle Scholar
  34. [34]
    H. Zhang and S. Zhou, The minimal seesaw model at the TeV scale, Phys. Lett. B 685 (2010) 297 [arXiv:0912.2661] [SPIRES].ADSGoogle Scholar
  35. [35]
    P.S.B. Dev and R.N. Mohapatra, TeV scale inverse seesaw in SO(10) and leptonic non-unitarity effects, Phys. Rev. D 81 (2010) 013001 [arXiv:0910.3924] [SPIRES].ADSGoogle Scholar
  36. [36]
    Z.-z. Xing and S. Zhou, Multiple seesaw mechanisms of neutrino masses at the TeV scale, Phys. Lett. B 679 (2009) 249 [arXiv:0906.1757] [SPIRES].ADSGoogle Scholar
  37. [37]
    S.M. Bilenky, S. Pascoli and S.T. Petcov, Majorana neutrinos, neutrino mass spectrum, CP-violation and neutrinoless double beta-decay. I: the three-neutrino mixing case, Phys. Rev. D 64 (2001) 053010 [hep-ph/0102265] [SPIRES].ADSGoogle Scholar
  38. [38]
    S.T. Petcov, Theoretical prospects of neutrinoless double beta decay, Phys. Scripta T 121 (2005) 94 [hep-ph/0504166] [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    S. Pascoli and S.T. Petcov, Majorana neutrinos, neutrino mass spectrum and the<m> ∣ ~ 10−3 eV frontier in neutrinoless double beta decay, Phys. Rev. D 77 (2008) 113003 [arXiv:0711.4993] [SPIRES].ADSGoogle Scholar
  40. [40]
    C. Aalseth et al., Neutrinoless double beta decay and direct searches for neutrino mass, hep-ph/0412300 [SPIRES].
  41. [41]
    IGEX collaboration, C.E. Aalseth et al., Recent results of the IGEX 76 Ge double beta decay experiment, Phys. Atomic Nuclei 63 (2000) 1225.ADSCrossRefGoogle Scholar
  42. [42]
    H.V. Klapdor-Kleingrothaus, I.V. Krivosheina, A. Dietz and O. Chkvorets, Search for neutrinoless double beta decay with enriched 76 Ge in Gran Sasso 19902003, Phys. Lett. B 586 (2004) 198 [hep-ph/0404088] [SPIRES].ADSGoogle Scholar
  43. [43]
    NEMO collaboration, A.S. Barabash, NEMO 3 double beta decay experiment: latest results, J. Phys. Conf. Ser. 173 (2009) 012008 [arXiv:0807.2336] [SPIRES].ADSCrossRefGoogle Scholar
  44. [44]
    CUORICINO collaboration, C. Arnaboldi et al., Results from a search for the 0νββ-decay of 130 Te, Phys. Rev. C 78 (2008) 035502 [arXiv:0802.3439] [SPIRES].ADSGoogle Scholar
  45. [45]
    A. Atre, T. Han, S. Pascoli and B. Zhang, The search for heavy Majorana neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [SPIRES].ADSCrossRefGoogle Scholar
  46. [46]
    F. del Aguila, J.A. Aguilar-Saavedra and R. Pittau, Neutrino physics at large colliders, J. Phys. Conf. Ser. 53 (2006) 506 [hep-ph/0606198] [SPIRES].CrossRefGoogle Scholar
  47. [47]
    E. Fernandez-Martinez, M.B. Gavela, J. Lopez-Pavon and O. Yasuda, CP-violation from non-unitary leptonic mixing, Phys. Lett. B 649 (2007) 427 [hep-ph/0703098] [SPIRES].ADSGoogle Scholar
  48. [48]
    A. Abada, C. Biggio, F. Bonnet, M.B. Gavela and T. Hambye, Low energy effects of neutrino masses, JHEP 12 (2007) 061 [arXiv:0707.4058] [SPIRES].ADSCrossRefGoogle Scholar
  49. [49]
    S. Antusch, J.P. Baumann and E. Fernandez-Martinez, Non-standard neutrino interactions with matter from physics beyond the standard model, Nucl. Phys. B 810 (2009) 369 [arXiv:0807.1003] [SPIRES].ADSCrossRefGoogle Scholar
  50. [50]
    S. Antusch, C. Biggio, E. Fernandez-Martinez, M.B. Gavela and J. Lopez-Pavon, Unitarity of the leptonic mixing matrix, JHEP 10 (2006) 084 [hep-ph/0607020] [SPIRES].ADSCrossRefGoogle Scholar
  51. [51]
    A. Merle and W. Rodejohann, The elements of the neutrino mass matrix: Allowed ranges and implications of texture zeros, Phys. Rev. D 73 (2006) 073012 [hep-ph/0603111] [SPIRES].ADSGoogle Scholar
  52. [52]
    A. Halprin, S.T. Petcov and S.P. Rosen, Effects of light and heavy Majorana neutrinos in neutrinoless double beta decay, Phys. Lett. B 125 (1983) 335 [SPIRES].ADSGoogle Scholar
  53. [53]
    J .D. Vergados, Lepton violating ββ , β+β+ decays, (e ,e +) conversion and double electron capture in gauge theories, Nucl. Phys. B 218 (1983) 109 [SPIRES].ADSCrossRefGoogle Scholar
  54. [54]
    W.C. Haxton and G.J. Stephenson, Double beta Decay, Prog. Part. Nucl. Phys. 12 (1984) 409 [SPIRES].ADSCrossRefGoogle Scholar
  55. [55]
    M. Blennow, E. Fernandez-Martinez, J. Lopez-Pavon and J. Menendez, Neutrinoless double beta decay in seesaw models, JHEP 07 (2010) 096 [arXiv:1005.3240] [SPIRES].ADSCrossRefGoogle Scholar
  56. [56]
    H. Pas, M. Hirsch, H.V. Klapdor-Kleingrothaus and S.G. Kovalenko, A superformula for neutrinoless double beta decay. II: the short range part, Phys. Lett. B 498 (2001) 35 [hep-ph/0008182] [SPIRES].ADSGoogle Scholar
  57. [57]
    J. Kersten and A.Y. Smirnov, Right-handed neutrinos at LHC and the mechanism of neutrino mass generation, Phys. Rev. D 76 (2007) 073005 [arXiv:0705.3221] [SPIRES].ADSGoogle Scholar
  58. [58]
    Z.-z. Xing, Low-energy limits on heavy Majorana neutrino masses from the neutrinoless double-beta decay and non-unitary neutrino mixing, Phys. Lett. B 679 (2009) 255 [arXiv:0907.3014] [SPIRES].ADSGoogle Scholar
  59. [59]
    J.A. Casas and A. Ibarra, Oscillating neutrinos and μe, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [SPIRES].ADSCrossRefGoogle Scholar
  60. [60]
    C.N. Leung and S.T. Petcov, A comment on the coexistence of Dirac and Majorana massive neutrinos, Phys. Lett. B 125 (1983) 461 [SPIRES].ADSGoogle Scholar
  61. [61]
    D. Wyler and L. Wolfenstein, Massless neutrinos in left-right symmetric models, Nucl. Phys. B 218 (1983) 205 [SPIRES].ADSCrossRefGoogle Scholar
  62. [62]
    G.C. Branco, W. Grimus and L. Lavoura, The seesaw mechanism in the presence of a conserved lepton number, Nucl. Phys. B 312 (1989) 492 [SPIRES].ADSCrossRefGoogle Scholar
  63. [63]
    R. Adhikari and A. Raychaudhuri, Light neutrinos from massless texture and below TeV seesaw scale, arXiv:1004.5111 [SPIRES].
  64. [64]
    L. Wolfenstein, Different varieties of massive Dirac neutrinos, Nucl. Phys. B 186 (1981) 147 [SPIRES].ADSCrossRefGoogle Scholar
  65. [65]
    S.T. Petcov, On pseudo-Dirac neutrinos, neutrino oscillations and neutrinoless double beta decay, Phys. Lett. B 110 (1982) 245 [SPIRES].ADSGoogle Scholar
  66. [66]
    F. del Aguila and J.A. Aguilar-Saavedra, Electroweak scale seesaw and heavy Dirac neutrino signals at LHC, Phys. Lett. B 672 (2009) 158 [arXiv:0809.2096] [SPIRES].ADSGoogle Scholar
  67. [67]
    K. Huitu, S. Khalil, H. Okada and S.K. Rai, Signatures for right-handed neutrinos at the Large Hadron Collider, Phys. Rev. Lett. 101 (2008) 181802 [arXiv:0803.2799] [SPIRES].ADSCrossRefGoogle Scholar
  68. [68]
    L. Basso, A. Belyaev, S. Moretti and C.H. Shepherd-Themistocleous, Phenomenology of the minimal B-L extension of the Standard model: Zand neutrinos, Phys. Rev. D 80 (2009) 055030 [arXiv:0812.4313] [SPIRES].ADSGoogle Scholar
  69. [69]
    S.T. Petcov and S.T. Toshev, Conservation of lepton charges, massive Majorana and massless neutrinos, Phys. Lett. B 143 (1984) 175 [SPIRES].ADSGoogle Scholar
  70. [70]
    K.S. Babu and E. Ma, Natural hierarchy of radiatively induced Majorana neutrino masses, Phys. Rev. Lett. 61 (1988) 674 [SPIRES].ADSCrossRefGoogle Scholar
  71. [71]
    E. Dudas and C.A. Savoy, Multiple seesaw at low energy, Acta Phys. Polon. B 33 (2002) 2547 [hep-ph/0205264] [SPIRES].ADSGoogle Scholar
  72. [72]
    R. Franceschini, T. Hambye and A. Strumia, Type-III see-saw at LHC, Phys. Rev. D 78 (2008) 033002 [arXiv:0805.1613] [SPIRES].ADSGoogle Scholar
  73. [73]
    F. Bonnet, D. Hernandez, T. Ota and W. Winter, Neutrino masses from higher than D =5 effective operators, JHEP 10 (2009) 076 [arXiv:0907.3143] [SPIRES].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Physik-Department T30dTechnische Universität MünchenGarchingGermany
  2. 2.SISSATriesteItaly
  3. 3.INFN-Sezione di TriesteTriesteItaly
  4. 4.IPPPDurham UniversityDurhamU.K.
  5. 5.IPMUUniversity of TokyoTokyoJapan

Personalised recommendations